Skip to main content

PLEASE NOTE: We are currently experiencing issues with articles from the AIAA Journal not adding to our shopping cart (for transactional sales of individual articles only). This ONLY affects the AIAA Journal. All other journal titles should work as expected. We apologize for this inconvenience. Please contact [email protected] for help with any urgent article requests. Thank you.

No AccessRegular Articles

Space–Time Conservation Element and Solution Element Method and Its Applications

Published Online:

This paper reviews the development of the space–time conservation element and solution element (CESE) method and summarizes its applications in various research areas. The CESE method is a special finite-volume-type method that provides an alternative approach to numerical solutions of fluid-dynamic equations and conservation laws in various physical systems. Based on a unified treatment of time and space, this method solves the integral form of the governing equations by discretization of the space–time domain. Recent progress in CESE schemes mainly includes the construction of a family of upwind CESE schemes, the extended definitions of conservation elements and solution elements for arbitrary meshes, and a new approach to developing high-order CESE schemes. Selected applications of the CESE method (including high-speed aerodynamics, multifluid flows, detonations, and aeroacoustics) are presented. Features of the CESE method are described.