Skip to main content
Skip to article control options
No AccessRegular Articles

Acoustic Analysis of Counter-Rotating Open Rotors with a Locked Blade Row

Published Online:https://doi.org/10.2514/1.J059273

Counter-rotating open rotors (CRORs) have the potential to reduce environmental emissions thanks to their high propulsive efficiency. However, there are a number of concerns surrounding their acoustic emissions. This contribution presents a novel multiconfiguration CROR that offers considerable noise reductions. In particular, locking either the fore or aft rotor during takeoff is considered, with the running rotor providing the required thrust. During cruise, both rotors are operated to retain the high efficiency of the CROR. A coupled computational fluid dynamics/computational aeroacoustics analysis has shown the potential of this multiconfiguration concept to offer substantial noise reductions when compared to a baseline CROR. During a simulated constant-altitude flyover at takeoff conditions, reductions of 3.5 and 7.9 dBA have been demonstrated when either the fore or aft row is locked, respectively. Using the effective perceived noise level metric, this result corresponded to 7 and 12 Effective Perceived Noise Level (in Decibels), respectively, for the same flyover.

References

  • [1] Van Zante D. E., “Progress in Open Rotor Research: A U.S. Perspective,” ASME Turbo Expo 2015, ASME, New York, 2015, pp. 1–0. https://doi.org/10.1115/GT2015-42203 Google Scholar

  • [2] Weckmüller C. and Guérin S., “On the Influence of Trailing-Edge Serrations on Open-Rotor Tonal Noise,” 18th AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2012-2124, 2012. https://doi.org/10.2514/6.2012-2124 Google Scholar

  • [3] Jaron R., Moreau A., Guérin S. and Schnell R., “Optimization of Trailing-Edge Serrations to Reduce Open-Rotor Tonal Interaction Noise,” Journal of Fluids Engineering, Vol. 140, No. 2, 2018, pp. 1–8. https://doi.org/10.1115/1.4037981 Google Scholar

  • [4] Delattre G. and Falissard F., “Aerodynamic and Acoustic Impacts of a Single Protuberance Placed on the Leading Edge of the Front Blades of an Open Rotor,” 48th International Symposium of Applied Aerodynamics of Small Bodies and Details, Saint Louis, France, 2013. Google Scholar

  • [5] Delattre G., Falissard F., Vion L. and Jacquin L., “Open Rotor Interaction Noise Reduction Through Front Rotor Wake Modification,” International Journal of Aeroacoustics, Vol. 15, Nos. 1–2, 2016, pp. 207–227. https://doi.org/10.1177/1475472X16643461 CrossrefGoogle Scholar

  • [6] Khalid S. A., Wojno J. P., Breeze-Stringfellow A., Lurie D. P., Wood T. H., Ramakrishnan K. and Paliath U., “Open Rotor Designs for Low Noise and High Efficiency,” Proceedings of the ASME Turbo Expo, Vol. 6 C, ASME, New York, 2013, pp. 1–0. https://doi.org/10.1115/GT2013-94736 Google Scholar

  • [7] Akkermans R. A. D., Stuermer A. and Delfs J. W., “Assessment of Front-Rotor Trailing-Edge-Blowing for the Reduction of Open Rotor Noise Emissions,” 19th AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2013-2200, 2013. https://doi.org/10.2514/6.2013-2200 LinkGoogle Scholar

  • [8] Akkermans R. A., Stuermer A. W. and Delfs J., “Active Flow Control for Interaction Noise Reduction of Contra-Rotating Open Rotors,” 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA Paper 2013-3799, 2013. https://doi.org/10.2514/6.2013-3799 LinkGoogle Scholar

  • [9] Stürmer A. and Akkermans R. A. D., “Multidisciplinary Analysis of CROR Propulsion Systems: DLR Activities in the JTI SFWA Project,” CEAS Aeronautical Journal, Vol. 5, No. 3, 2014, pp. 265–277. https://doi.org/10.1007/s13272-014-0105-4 CrossrefGoogle Scholar

  • [10] Stuermer A., Akkermans R. A. D. and Delfs J. W., “Assessment of Front Rotor Trailing Edge Blowing for the Reduction of Open Rotor Interaction Noise,” New Results in Numerical and Experimental Fluid Mechanics IX, Vol. 124, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Springer, New York, 2014, pp. 609–618. https://doi.org/10.1007/978-3-319-03158-3_62 Google Scholar

  • [11] Akkermans R. A. D., Stuermer A. and Delfs J. W., “Active Flow Control for Interaction Noise Reduction of Contra-Rotating Open Rotors,” AIAA Journal, Vol. 54, No. 4, 2016, pp. 1413–1423. https://doi.org/10.2514/1.J053756 LinkGoogle Scholar

  • [12] Zachariadis A., Hall C. and Parry A. B., “Contrarotating Open Rotor Operation for Improved Aerodynamics and Noise at Takeoff,” Journal of Turbomachinery, Vol. 135, No. 3, 2013, Paper 031010. https://doi.org/10.1115/1.4006778 CrossrefGoogle Scholar

  • [13] Delattre G. and Falissard F., “Influence of Torque Ratio on Counter-Rotating Open-Rotor Interaction Noise,” AIAA Journal, Vol. 53, No. 9, 2015, pp. 2726–2738. https://doi.org/10.2514/1.J053797 LinkGoogle Scholar

  • [14] Propeller-Driven Aeroplanes Not Exceeding 8 618 kg,” ICAO Annex 16: Environmental Protection, Vol. 1, Aircraft Noise, International Civil Aviation Organization, Montreal, 2011, Chap. 10. Google Scholar

  • [15] Filippone A. and Mohamed-Kassim Z., “Multi-Disciplinary Simulation of Propeller-Turboprop Aircraft Flight,” Aeronautical Journal, Vol. 116, No. 1184, 2012, pp. 985–1014. https://doi.org/10.1017/S0001924000007454 CrossrefGoogle Scholar

  • [16] Filippone A., “Aircraft Noise: Noise Sources,” Advanced Aircraft Flight Performance, Cambridge Univ. Press, New York, 2012, pp. 470–532. https://doi.org/10.1017/CBO9781139161893 Google Scholar

  • [17] Jeracki R. J., Mikkelson D. C. and Blaha B. J., “Wind Tunnel Performance of Four Energy Efficient Propellers Designed for Mach 0.8 Cruise,” NASA TM-79124, 1979. https://doi.org/10.4271/790573 CrossrefGoogle Scholar

  • [18] Smith D. A., Filippone A. and Bojdo N., “Low Order Multidisciplinary Optimisation of Counter-Rotating Open Rotors,” European Rotorcraft Forum, Delft, The Netherlands, 2018, Paper 38. Google Scholar

  • [19] Barakos G., Steijl R., Badcock K. and Brocklehurst A., “Development of CFD Capability for Full Helicopter Engineering Analysis,” 31st European Rotorcraft Forum, Florence, Italy, 2005, Paper 91. Google Scholar

  • [20] Steijl R., Barakos G. and Badcock K., “A Framework for CFD Analysis of Helicopter Rotors in Hover and Forward Flight,” International Journal for Numerical Methods in Fluids, Vol. 51, No. 8, 2006, pp. 819–847. https://doi.org/10.1002/fld.1086 CrossrefGoogle Scholar

  • [21] Jarkowski M., Woodgate M. A., Barakos G. N. and Rokicki J., “Towards Consistent Overset Mesh Methods for Rotorcraft CFD,” International Journal for Numerical Methods in Fluids, Vol. 74, No. 8, 2014, pp. 543–576. https://doi.org/10.1002/fld.3861 CrossrefGoogle Scholar

  • [22] Hirt C., Amsden A. and Cook J., “An Arbitrary Lagrangian–Eulerian Computing Method for All Flow Speeds,” Journal of Computational Physics, Vol. 135, No. 2, 1997, pp. 203–216. https://doi.org/10.1006/jcph.1997.5702 CrossrefGoogle Scholar

  • [23] Menter F. R., “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications,” AIAA Journal, Vol. 32, No. 8, 1994, pp. 1598–1605. https://doi.org/10.2514/3.12149 LinkGoogle Scholar

  • [24] Osher S. and Chakravarthy S., “Upwind Schemes and Boundary Conditions with Applications to Euler Equations in General Geometries,” Journal of Computational Physics, Vol. 50, No. 3, 1983, pp. 447–481. https://doi.org/10.1016/0021-9991(83)90106-7 CrossrefGoogle Scholar

  • [25] van Leer B., “Towards the Ultimate Conservative Difference Scheme. V. A Second-Order Sequel to Godunov’s Method,” Journal of Computational Physics, Vol. 32, No. 1, 1979, pp. 101–136. https://doi.org/10.1016/0021-9991(79)90145-1 CrossrefGoogle Scholar

  • [26] van Albada G. D., van Leer B. and Roberts W. W., “A Comparative Study of Computational Methods in Cosmic Gas Dynamics,” Astronomy and Astrophysics, Vol. 108, No. 1, 1982, pp. 76–84. https://doi.org/10.1007/978-3-642-60543-7_6 Google Scholar

  • [27] Axelsson O., Iterative Solution Methods, Cambridge Univ. Press, New York, 1994, pp. 504–557. https://doi.org/10.1016/j.apnum.2004.06.003 CrossrefGoogle Scholar

  • [28] Chirico G., Barakos G. N. and Bown N., “Computational Aeroacoustic Analysis of Propeller Installation Effects,” 43rd European Rotorcraft Forum, Milan, Italy, 2017, Paper 521. Google Scholar

  • [29] Jimenez-Garcia A., Barakos G. N. and Gates S., “Tiltrotor CFD Part I–Validation,” Aeronautical Journal, Vol. 121, No. 1239, 2017, pp. 577–610. https://doi.org/10.1017/aer.2017.17 CrossrefGoogle Scholar

  • [30] Dunham D. M., Gentry C. L. and Coe P. L., “Low-Speed Wind-Tunnel Tests of Single- and Counter-Rotation Propellers,” NASA TM-87656, 1986. Google Scholar

  • [31] Farassat F., “Linear Acoustic Formulas for Calculation of Rotating Blade Noise,” AIAA Journal, Vol. 19, No. 9, 1981, pp. 1122–1130. https://doi.org/10.2514/3.60051 LinkGoogle Scholar

  • [32] Ffowcs Williams J. E. and Hawkings D. L., “Sound Generation by Turbulence and Surfaces in Arbitrary Motion,” Philosophical Transactions of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, Vol. 264, No. 1151, 1969, pp. 321–342. https://doi.org/10.1098/rsta.1969.0031 CrossrefGoogle Scholar

  • [33] Parry A. B., Kingan M. and Tester B. J., “Relative Importance of Open Rotor Tone and Broadband Noise Sources,” 17th AIAA/CEAS Aeroacoustics Conference 2011 (32nd AIAA Aeroacoustics Conference), AIAA Paper 2011-2763, 2011. https://doi.org/10.2514/6.2011-2763 Google Scholar

  • [34] Kingan M. J., “Open Rotor Broadband Interaction Noise,” Journal of Sound and Vibration, Vol. 332, No. 17, 2013, pp. 3956–3970. https://doi.org/10.1016/j.jsv.2013.03.014 CrossrefGoogle Scholar

  • [35] Block P. J. W., Klatte R. J. and Druez P. M., “Counter-Rotating Propeller Noise Directivity and Trends,” AIAA 10th Aeroacoustics Conference, AIAA Paper 1986-1927, 1986. https://doi.org/10.2514/6.1986-1927 LinkGoogle Scholar

  • [36] Filippone A., “Propeller Performance,” Advanced Aircraft Flight Performance, Cambridge Univ. Press, New York, 2012, pp. 152–178, Chap. 6. Google Scholar

  • [37] Kingan M. J., Ekoule C. M., Parry A. B. and Britchford K. M., “Analysis of Advanced Open Rotor Noise Measurements,” 20th AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2014-2745, 2014. https://doi.org/10.2514/6.2014-2745 LinkGoogle Scholar

  • [38] Kingan M. J. and Self R. H., “Counter-Rotation Propeller Tip Vortex Interaction Noise,” 15th AIAA/CEAS Aeroacoustics Conference (30th AIAA Aeroacoustics Conference), AIAA Paper 2009-3135, 2009. https://doi.org/10.2514/6.2009-3135 LinkGoogle Scholar

  • [39] Haller G., “An Objective Definition of a Vortex,” Journal of Fluid Mechanics, Vol. 525, Feb. 2005, pp. 1–26. 10.1017/S0022112004002526 CrossrefGoogle Scholar