Skip to main content
Skip to article control options
No AccessTechnical Notes

Computational Study of Aeroelastic Response due to Freeplay and Flight Loads

Published Online:https://doi.org/10.2514/1.J059640
Free first page

References

  • [1] Kholodar D. B. and Dowell E. H., “Behavior of Airfoil with Control Surface Freeplay for Nonzero Angles of Attack,” AIAA Journal, Vol. 37, No. 5, 1999, pp. 651–653. LinkGoogle Scholar

  • [2] Lee B. H. K., Price S. J. and Wong Y. S., “Nonlinear Aeroelastic Analysis of Airfoils: Bifurcation and Chaos,” Progress in Aerospace Sciences, Vol. 35, No. 3, 1999, pp. 205–334. https://doi.org/10.1016/S0376-0421(98)00015-3 CrossrefGoogle Scholar

  • [3] Tang D. and Dowell E. H., “Flutter and Limit-Cycle Oscillations for a Wing-Store Model with Freeplay,” Journal of Aircraft, Vol. 43, No. 2, 2006, pp. 487–503. https://doi.org/10.2514/1.12650 LinkGoogle Scholar

  • [4] Gordon J. T., Meyer E. E. and Minogue R. L., “Nonlinear Stability Analysis of Control Surface Flutter with Free-Play Effects,” Journal of Aircraft, Vol. 45, No. 6, 2008, pp. 1904–1916. https://doi.org/10.2514/1.31901 LinkGoogle Scholar

  • [5] Tang D. and Dowell E. H., “Aeroelastic Airfoil with Free Play at Angle of Attack with Gust Excitation,” AIAA Journal, Vol. 48, No. 2, 2010, pp. 427–442. https://doi.org/10.2514/1.44538 LinkGoogle Scholar

  • [6] Tang D. and Dowell E. H., “Aeroelastic Response Induced by Free Play, Part 1: Theory,” AIAA Journal, Vol. 49, No. 11, 2011, pp. 2532–2542. https://doi.org/10.2514/1.J051055 LinkGoogle Scholar

  • [7] Tang D. and Dowell E. H., “Aeroelastic Response Induced by Free Play, Part 2: Theoretical/Experimental Correlation Analysis,” AIAA Journal, Vol. 49, No. 11, 2011, pp. 2543–2554. https://doi.org/10.2514/1.J051056 LinkGoogle Scholar

  • [8] Tang D. and Dowell E. H., “Computational/Experimental Aeroelastic Study for a Horizontal-Tail Model with Free Play,” AIAA Journal, Vol. 51, No. 2, 2013, pp. 341–352. LinkGoogle Scholar

  • [9] Kholodar D. B., “Nature of Freeplay-Induced Aeroelastic Oscillations,” Journal of Aircraft, Vol. 51, No. 2, 2014, pp. 571–583. LinkGoogle Scholar

  • [10] Verstraelen E., Dimitriadis G., Rossetto G. D. B. and Dowell E. H., “Two-Domain and Three-Domain Limit Cycles in a Typical Aeroelastic System with Freeplay in Pitch,” Journal of Fluids and Structures, Vol. 69, Feb. 2017, pp. 89–107. https://doi.org/10.1016/j.jfluidstructs.2016.11.019 CrossrefGoogle Scholar

  • [11] Anderson W. and Mortara S., “Maximum Control Surface Freeplay, Design and Flight Testing Approach on the F-22,” AIAA Paper 2007-1767, 2007. https://doi.org/10.2514/6.2007-1767 LinkGoogle Scholar

  • [12] Chen P. C. and Lee D. H., “Flight-Loads Effects on Horizontal Tail Free-Play-Induced Limit Cycle Oscillation,” Journal of Aircraft, Vol. 45, No. 2, 2008, pp. 478–485. https://doi.org/10.2514/1.29611 LinkGoogle Scholar

  • [13] Schlomach C., “All-Moveable Control Surface Freeplay,” Aerospace Flutter and Dynamics Council, NASA LaRC, Hampton, VA, April 2009. Google Scholar

  • [14] Chen P. C., Ritz E. and Lindsley N., “Nonlinear Flutter Analysis for the Scaled F-35 with Horizontal-Tail Free Play,” Journal of Aircraft, Vol. 51, No. 3, 2014, pp. 883–889. https://doi.org/10.2514/1.C032501 LinkGoogle Scholar

  • [15] Kholodar D. B., “Aircraft Control Surface and Store Freeplay-Induced Vibrations in Aeroelastic Stability Envelope,” Journal of Aircraft, Vol. 53, No. 5, 2016, pp. 1538–1548. LinkGoogle Scholar

  • [16] Garrigues E., “A Review of Industrial Aeroelasticity Practices at Dassault Aviation for Military Aircraft and Business Jets,” Aerospace Lab Journal, No. 14, Sept. 2018, pp. 1–34. https://doi.org/10.12762/2018.AL14-09 Google Scholar

  • [17] Norton W. J., “Limit Cycle Oscillation and Flight Flutter Testing,” Proceedings of 21st Annual Symposium, Soc. of Flight Test Engineers, Garden Grove, CA, 1990, p. 3. Google Scholar

  • [18] Denegri C. M., “Limit Cycle Oscillation Flight Test Results of a Fighter with External Stores,” Journal of Aircraft, Vol. 37, No. 5, 2000, pp. 761–769. https://doi.org/10.2514/2.2696 LinkGoogle Scholar

  • [19] Goodman C., Hood M., Reichenbach E. and Yurkovich R., “An Analysis of the F/A-18C/D Limit Cycle Oscillation Solution,” AIAA Paper 2003-1424, 2003. LinkGoogle Scholar

  • [20] Livne E., “Aircraft Active Flutter Suppression: State of the Art and Technology Maturation Needs,” Journal of Aircraft, Vol. 55, No. 1, 2018, pp. 410–450. LinkGoogle Scholar

  • [21] Sanches L., Guimarães T. A. and Marques F. D., “Aeroelastic Tailoring of Nonlinear Typical Section Using the Method of Multiple Scales to Predict Post-Flutter Stable LCOs,” Aerospace Science and Technology, Vol. 90, July 2019, pp. 157–168. https://doi.org/10.1016/j.ast.2019.04.031 CrossrefGoogle Scholar

  • [22] Jonsson E., Riso C., Lupp C. A., Cesnik C. E., Martins J. R. and Epureanu B. I., “Flutter and Post-Flutter Constraints in Aircraft Design Optimization,” Progress in Aerospace Sciences, Vol. 109, Aug. 2019, Paper 100537. https://doi.org/10.1016/j.paerosci.2019.04.001 CrossrefGoogle Scholar

  • [23] Riso C., Ghadami A., Cesnik C. E. and Epureanu B. I., “Data-Driven Forecasting of Postflutter Responses of Geometrically Nonlinear Wings,” AIAA Journal, Vol. 58, No. 6, 2020, pp. 2726–2736. https://doi.org/10.2514/1.J059024 LinkGoogle Scholar

  • [24] Harris C. A. and Chin A. W., “Ground and Flight Tests to Assure Aeroelastic/Aeroservoelastic Stability-Section 2.1.2.5 Limit Cycle Oscillation,” Tech. Rept. 412TW-PA-19351, Wright Patterson Air Force Base, Ohio, July 2019. Google Scholar

  • [25] Military Specification: Airplane Strength and Rigidity, Vibration, Flutter, and Divergence,” Tech. Rept. Mil-A-8870C(AS), Wright Patterson Air Force Base, Ohio, March 1993. Google Scholar

  • [26] Hoffman N. R. and Spielberg I. N., “Subsonic Flutter Tests of an Unswept All-Movable Horizontal Tail,” WADC-TR-54-53, Naval Air Warfare Center, Lakehurst, NJ, 1954. Google Scholar

  • [27] Tang D., Dowell E. H. and Virgin L. N., “Limit Cycle Behavior of an Airfoil with a Control Surface,” Journal of Fluids and Structures, Vol. 12, No. 7, 1998, pp. 839–858. https://doi.org/10.1006/jfls.1998.0174 CrossrefGoogle Scholar

  • [28] Dimitriadis G., Introduction to Nonlinear Aeroelasticity, Wiley, Hoboken, NJ, 2017, Chap. 4. https://doi.org/10.1002/9781118756478 CrossrefGoogle Scholar

  • [29] Laurenson R. M. and Trn R. M., “Flutter of Control Surfaces with Structural Nonlinearities,” McDonnell Douglas Astronautics Co. TR MDC-E1734, East St. Louis, Missouri, Aug. 1977. https://doi.org/10.2514/3.50876 Google Scholar

  • [30] Desmarais R. N. and Reed W. H., “Wing/Store Flutter with Nonlinear Pylon Stiffness,” Journal of Aircraft, Vol. 18, No. 11, 1981, pp. 984–987. https://doi.org/10.2514/3.57590 LinkGoogle Scholar

  • [31] Padmanabhan M. A. and Dowell E. H., “Calculation of Aeroelastic Limit Cycles due to Localized Nonlinearity and Static Preload,” AIAA Journal, Vol. 55, No. 8, 2017, pp. 2762–2772. https://doi.org/10.2514/1.J055505 LinkGoogle Scholar

  • [32] Gelb A. and Vander Velde W. E., Multiple-Input Describing Functions and Nonlinear System Design, McGraw–Hill, New York, 1968, Appendix C. Google Scholar

  • [33] Mapping Toolbox for MATLAB, MathWorks, Inc., Natick, MA, 2015. Google Scholar

  • [34] Padmanabhan M. A., Dowell E. H., Thomas J. P. and Pasiliao C. L., “Store-Induced Limit-Cycle Oscillations due to Nonlinear Wing-Store Attachment,” Journal of Aircraft, Vol. 53, No. 3, 2016, pp. 778–789. https://doi.org/10.2514/1.C033577 LinkGoogle Scholar

  • [35] Patil M. J., Hodges D. H. and Cesnik C. E. S., “Nonlinear Aeroelastic Analysis of Complete Aircraft in Subsonic Flow,” Journal of Aircraft, Vol. 37, No. 5, 2000, pp. 753–760. LinkGoogle Scholar

  • [36] Gilliat H. C., Strganac T. W. and Kurdila A. J., “An Investigation of Internal Resonance in Aeroelastic Systems,” Nonlinear Dynamics, Vol. 31, No. 1, Jan. 2003, pp. 1–22. Google Scholar