Skip to main content
Skip to article control options
No AccessRegular Articles

Kinematics of the Turbulent and Nonturbulent Interfaces in a Subsonic Airfoil Flow

Published Online:https://doi.org/10.2514/1.J059651

The subject of turbulent and nonturbulent interfaces (TNTIs) has been extensively studied using idealized free-shear flows and zero-pressure-gradient flat-plate boundary layers. However, it remains to be addressed whether a TNTI can be quantitively identified in complex aerodynamic flows where separation bubbles, transition, turbulent boundary-layer separation and an asymmetric wake coexist in a complex spatially developing fashion. Here, we report a direct numerical simulation study at Ma=0.5 and at a low Reynolds number past a NACA-0012 airfoil at a 2  deg angle of attack. The threshold-free fuzzy cluster method is used for TNTI identification, and it is corroborated by a joint probability density function-based method. The TNTIs detected are confirmed to be physical a posteriori by the distinctive quasi-step jump behavior in conditionally averaged statistics along traverses normal to the interfaces. The possible connection between the TNTI curvature and local entrainment is also investigated. Airfoil TNTI curvature parameters are found to be noticeably affected by the transitional state of the flow; at the same time, there are only minor differences between the TNTIs in the boundary-layer region and in the wake region. Conditionally sampled results suggest that there is little propensity for local entrainment to occur on either the leading or trailing edge of the TNTIs. Downstream of transition, local entrainment is more pronounced on relatively flat TNTI surfaces for both the airfoil wake and boundary layer.

References

  • [1] Dimotakis P. E., “The Mixing Transition in Turbulent Flows,” Journal of Fluid Mechanics, Vol. 409, April 2000, pp. 69–98. https://doi.org/10.1017/S0022112099007946 CrossrefGoogle Scholar

  • [2] Mathew J. and Basu A. J., “Some Characteristics of Entrainment at a Cylindrical Turbulence Boundary,” Physics of Fluids, Vol. 14, No. 7, 2002, pp. 2065–2072. https://doi.org/10.1063/1.1480831 CrossrefGoogle Scholar

  • [3] Westerweel J., Fukushima C., Pedersen J. M. and Hunt J. C. R., “Mechanics of the Turbulent-Nonturbulent Interface of a Jet,” Physical Review Letters, Vol. 95, Oct. 2005, Paper 174501. https://doi.org/10.1103/PhysRevLett.95.174501 Google Scholar

  • [4] Westerweel J., Fukushima C., Pedersen J. M. and Hunt J. C. R., “Momentum and Scalar Transport at the Turbulent/Non-Turbulent Interface of a Jet,” Journal of Fluid Mechanics, Vol. 631, July 2009, pp. 199–230. https://doi.org/10.1017/S0022112009006600 CrossrefGoogle Scholar

  • [5] da Silva C. B., Hunt J. C. R., Eames I. and Westerweel J., “Interfacial Layers Between Regions of Different Turbulence Intensity,” Annual Review of Fluid Mechanics, Vol. 46, Jan. 2014, pp. 567–590. https://doi.org/10.1146/annurev-fluid-010313-141357 CrossrefGoogle Scholar

  • [6] Wu X., Wallace J. M. and Hickey J. P., “Boundary Layer Turbulence and Freestream Turbulence Interface, Turbulent Spot and Freestream Turbulence Interface, Laminar Boundary Layer and Freestream Turbulence Interface,” Physics of Fluids, Vol. 31, No. 4, 2019, Paper 045104. https://doi.org/10.1063/1.5093040 Google Scholar

  • [7] Nagata R., Watanabe T. and Nagata K., “Turbulent/Non-Turbulent Interfaces in Temporally Evolving Compressible Planar Jets,” Physics of Fluids, Vol. 30, No. 10, 2018, Paper 105109. https://doi.org/10.1063/1.5047395 Google Scholar

  • [8] Tichenor N. R., “Turbulent/Non-Turbulent Interface and Uniform Momentum Zones of High-Speed Turbulent Boundary Layers Subjected to Streamline Pressure Gradient,” AIAA Aviation 2019 Forum, AIAA Paper 2019-341, 2019, pp. 1–11. https://doi.org/10.2514/6.2019-3341 Google Scholar

  • [9] Yoon M., Hwang J., Yang J. and Sung H. J., “Wall-Attached Structures of Streamwise Velocity Fluctuations in an Adverse-Pressure-Gradient Turbulent Boundary Layer,” Journal of Fluid Mechanics, Vol. 885, Feb. 2020, Paper A12. https://doi.org/10.1017/jfm.2019.950 Google Scholar

  • [10] Fan D., Xu J., Yao M. X. and Hickey J. P., “On the Detection of Internal Interfacial Layers in Turbulent Flows,” Journal of Fluid Mechanics, Vol. 872, Aug. 2019, pp. 198–217. https://doi.org/10.1017/jfm.2019.343 Google Scholar

  • [11] Nagarajan S., Lele S. K. and Ferziger J. H., “A Robust High-Order Compact Method for Large Eddy Simulation,” Journal of Computational Physics, Vol. 191, No. 2, 2003, pp. 392–419. https://doi.org/10.1016/S0021-9991(03)00322-X CrossrefGoogle Scholar

  • [12] Economon T. D., Palacios F., Copeland S. R., Lukaczyk T. W. and Alonso J. J., “SU2: An Open-Source Suite for Multiphysics Simulation and Design,” AIAA Journal, Vol. 54, No. 3, 2016, pp. 828–846. https://doi.org/10.2514/1.J053813 LinkGoogle Scholar

  • [13] Nagarajan S., “Leading-Edge Effects in Bypass Transition,” Ph.D. Thesis, Dept. of Mechanical Engineering, Stanford Univ., Stanford, CA, 2004. Google Scholar

  • [14] Mani A., “Optical Distortions by Compressible Turbulence,” Ph.D. Thesis, Dept. of Mechanical Engineering, Stanford Univ., Stanford, CA, 2009. Google Scholar

  • [15] Mani A., Moin P. and Wang M., “Computational Study of Optical Distortions by Separated Shear Layers and Turbulent Wakes,” Journal of Fluid Mechanics, Vol. 625, April 2009, pp. 273–298. https://doi.org/10.1017/S0022112008005697 CrossrefGoogle Scholar

  • [16] Khalighi Y., “Computational Aeroacoustics of Complex Flows at Low Mach Number,” Ph.D. Thesis, Dept. of Mechanical Engineering, Stanford Univ., Stanford, CA, 2010. Google Scholar

  • [17] Khalighi Y., Mani A., Ham F. and Moin P., “Prediction of Sound Generated by Complex Flows at Low Mach Numbers,” AIAA Journal, Vol. 48, No. 2, 2010, pp. 306–316. https://doi.org/10.2514/1.42583 LinkGoogle Scholar

  • [18] Prasad R. R. and Sreenivasan K. R., “Scalar Interfaces in Digital Images of Turbulent Flows,” Experiments in Fluids, Vol. 7, No. 4, 1989, pp. 259–264. https://doi.org/10.1007/BF00198005 CrossrefGoogle Scholar

  • [19] Bisset D. K., Hunt J. C. R. and Rogers M. M., “The Turbulent/Non-Turbulent Interface Bounding a Far Wake,” Journal of Fluid Mechanics, Vol. 451, Jan. 2002, pp. 383–410. https://doi.org/10.1017/S0022112001006759 Google Scholar

  • [20] Chauhan K., Philip J., de Silva C. M., Hutchins N. and Marusic I., “The Turbulent/Non-Turbulent Interface and Entrainment in a Boundary Layer,” Journal of Fluid Mechanics, Vol. 742, March 2014, pp. 119–151. https://doi.org/10.1017/jfm.2013.641 CrossrefGoogle Scholar

  • [21] Borrell G. and Jiménez J., “Properties of the Turbulent/Non-Turbulent Interface in Boundary Layers,” Journal of Fluid Mechanics, Vol. 801, Aug. 2016, pp. 554–596. https://doi.org/10.1017/jfm.2016.430 CrossrefGoogle Scholar

  • [22] Salesky S. T. and Anderson W., “Revisiting Inclination of Large-Scale Motions in Unstably Stratified Channel Flow,” Journal of Fluid Mechanics, Vol. 884, Feb. 2020, Paper R5. https://doi.org/10.1017/jfm.2019.987 Google Scholar

  • [23] Kurz H. B. E. and Kloker M. J., “Receptivity of a Swept-Wing Boundary Layer to Micron-Sized Discrete Roughness Elements,” Journal of Fluid Mechanics, Vol. 755, Sept. 2014, pp. 62–82. https://doi.org/10.1017/jfm.2014.425 CrossrefGoogle Scholar

  • [24] Bisset D. K., Hunt J. C. R. and Rogers M. M., “Aspects of Turbulent/Non-Turbulent Interfaces,” Annual Research Briefs, 1999, pp. 195–204. Google Scholar

  • [25] Mistry D., Philip J. and Dawson J. R., “Kinematics of Local Entrainment and Detrainment in a Turbulent Jet,” Journal of Fluid Mechanics, Vol. 871, July 2019, pp. 896–924. https://doi.org/10.1017/jfm.2019.327 Google Scholar

  • [26] Gampert M., Narayanaswamy V., Schaefer P. and Peters N., “Conditional Statistics of the Turbulent/Non-Turbulent Interface in a Jet Flow,” Journal of Fluid Mechanics, Vol. 731, Sept. 2013, pp. 615–638. https://doi.org/10.1017/jfm.2013.327 Google Scholar

  • [27] Hickey J. P., Hussain F. and Wu X., “Role of Coherent Structures in Multiple Self-Similar States of Turbulent Planar Wakes,” Journal of Fluid Mechanics, Vol. 731, Sept. 2013, pp. 312–363. https://doi.org/10.1017/jfm.2013.315 CrossrefGoogle Scholar

  • [28] Kwon Y. S., Hutchins N. and Monty J. P., “On the Use of the Reynolds Decomposition in the Intermittent Region of Turbulent Boundary Layers,” Journal of Fluid Mechanics, Vol. 794, May 2016, pp. 5–16. https://doi.org/10.1017/jfm.2016.161 Google Scholar

  • [29] Rusinkiewicz S., “Estimating Curvatures and Their Derivatives on Triangle Meshes,” Proceedings of 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 3DPVT 2004, IEEE, New York, 2004, pp. 486–493. https://doi.org/10.1109/TDPVT.2004.1335277 Google Scholar

  • [30] Shabat Y. B. and Fischer A., “Design of Porous Micro-Structures Using Curvature Analysis for Additive-Manufacturing,” Procedia CIRP, Vol. 36, Jan. 2015, pp. 279–284. https://doi.org/10.1016/j.procir.2015.01.057 Google Scholar

  • [31] Wolf M., Lüthi B., Holzner M., Krug D., Kinzelbach W. and Tsinober A., “Investigations on the Local Entrainment Velocity in a Turbulent Jet,” Physics of Fluids, Vol. 24, No. 10, 2012, Paper 105110. https://doi.org/10.1063/1.4761837 Google Scholar

  • [32] Wolf M., Holzner M., Lüthi B., Krug D., Kinzelbach W. and Tsinober A., “Effects of Mean Shear on the Local Turbulent Entrainment Process,” Journal of Fluid Mechanics, Vol. 731, Sept. 2013, pp. 95–116. https://doi.org/10.1017/jfm.2013.365 Google Scholar

  • [33] Philip J., Meneveau C., de Silva C. M. and Marusic I., “Multiscale Analysis of Fluxes at the Turbulent/Non-Turbulent Interface in High Reynolds Number Boundary Layers,” Physics of Fluids, Vol. 26, Jan. 2014, Paper 015105. https://doi.org/10.1063/1.4861066 Google Scholar

  • [34] Philip J., Bermejo-Moreno I., Chung D. and Marusic I., “Characteristics of the Entrainment Velocity in a Developing Wake,” 9th International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2015, 2015, pp. 1–6. Google Scholar

  • [35] Holzner M. and Lüthi B., “Laminar Superlayer at the Turbulence Boundary,” Physical Review Letters, Vol. 106, No. 13, 2011, Paper 134503. https://doi.org/10.1103/PhysRevLett.106.134503 Google Scholar

  • [36] Watanabe T., Sakai Y., Nagata K., Ito Y. and Hayase T., “Turbulent Mixing of Passive Scalar Near Turbulent and Non-Turbulent Interface in Mixing Layers,” Physics of Fluids, Vol. 27, Aug. 2015, Paper 085109. https://doi.org/10.1063/1.4928199 Google Scholar

  • [37] Zhang X., Watanabe T. and Nagata K., “Passive Scalar Mixing Near Turbulent/Non-Turbulent Interface in Compressible Turbulent Boundary Layers,” Physica Scripta, Vol. 94, April 2019, Paper 044002. https://doi.org/10.1088/1402-896/aafbdf Google Scholar