Skip to main content

IMPORTANT NOTICE: The ARC website is being updated on Tuesday, May 28, 2024. ARC will be in a "Read Only" mode. Viewing and downloading content will be available but other functions are restricted. For further inquiries, please contact [email protected].

Skip to article control options
No AccessRegular Articles

Source Localization of Crackle-Related Events in Military Aircraft Jet Noise

Published Online:https://doi.org/10.2514/1.J059823

Crackle is a perceptual feature of supersonic jet noise that is related to the presence of acoustic shocks. This study investigates the apparent source locations of the steepest shocklike events in the noise field of a high-performance military jet aircraft using an event-based time-domain beamforming method. This method uses the cross correlation between adjacent microphones to determine the angle of propagation of an ensemble of shock-related events within the time waveform. This angle of propagation is then traced back toward the source to find the apparent source location. Based on the propagation angle, derivative skewness, and overall sound pressure level, the microphone positions along the array are sorted into six groups. Shock events from groups related to crackle perception in the near field originate anywhere from 2 to 14.5 m downstream along the nozzle lip line, with distributions that shift downstream and broaden with increasing engine power. The crackle-related events appear to be generated by Mach wave radiation and large-scale turbulence structure noise.

References

  • [1] Ffowcs Williams J. E., Simson J. and Virchis V. J., “‘Crackle’: An Annoying Component of Jet Noise,” Journal of Fluid Mechanics, Vol. 71, No. 2, 1975, pp. 251–271. https://doi.org/10.1017/S0022112075002558 CrossrefGoogle Scholar

  • [2] Krothapalli A., Venkatakrishnan L. and Lourenco L., “Crackle: A Dominant Component of Supersonic Jet Mixing Noise,” AIAA Paper 2000-2024, June 2000. https://doi.org/10.2514/6.2000-2024 Google Scholar

  • [3] Gee K. L., Neilsen T. B., Muhlestein M. B., Wall A. T., Downing J. M., James M. M. and McKinley R. L., “On the Evolution of Crackle in Jet Noise from High-Performance Engines,” AIAA Paper 2013-2190, June 2013. https://doi.org/10.2514/6.2013-2190 Google Scholar

  • [4] McInerny S., Downing M., Hobbs C., James M. and Hannon M., “Metrics that Characterize Nonlinearity in Jet Noise,” AIP Conference Proceedings, Vol. 838, No. 1, 2006, pp. 560–563. https://doi.org/10.1063/1.2210418 Google Scholar

  • [5] Fievet R., Tinney C. E., Baars W. J. and Hamilton M. F., “Coalescence in the Sound Field of a Laboratory-Scale Supersonic Jet,” AIAA Journal, Vol. 54, No. 1, 2016, pp. 254–265. https://doi.org/10.2514/1.J05452 LinkGoogle Scholar

  • [6] Mora P., Heeb N., Kastner J., Gutmark E. J. and Kailasanath K., “Effect of Heat on the Pressure Skewness and Kurtosis in Supersonic Jets,” AIAA Journal, Vol. 52, No. 4, 2014, pp. 777–787. https://doi.org/10.2514/1.J052612 LinkGoogle Scholar

  • [7] Tam C. K. W., Spyropoulos J. T., Aubert A. C. and Powers R. W., “Crackle in the Noise of High-Performance Aircraft,” AIAA Paper 2018-3306, June 2018. https://doi.org/10.2514/6.2018-3306 Google Scholar

  • [8] Pineau P. and Bogey C., “Steepened Mach Waves Near Supersonic Jets: Study of Azimuthal Structure and Generation Process Using Conditional Averages,” Journal of Fluid Mechanics, Vol. 880, Oct. 2019, pp. 594–619. https://doi.org/10.1017/jfm.2019.729 CrossrefGoogle Scholar

  • [9] Veltin J., Day B. J. and McLaughlin D. K., “Correlation of Flowfield and Acoustic Field Measurements in High-Speed Jets,” AIAA Journal, Vol. 49, No. 1, 2011, pp. 150–163. https://doi.org/10.2514/1.J050583 LinkGoogle Scholar

  • [10] Murray N. E. and Lyons G. W., “On the Convection Velocity of Source Events Related to Supersonic Jet Crackle,” Journal of Fluid Mechanics, Vol. 793, March 2016, pp. 477–503. https://doi.org/10.1017/jfm.2016.127 CrossrefGoogle Scholar

  • [11] Gee K. L., Sparrow V. W., James M. M., Downing J. M., Hobs C. M., Gabrielson T. B. and Atchley A. A., “The Role of Nonlinear Effects in the Propagation of Noise from High Power Aircraft,” Journal of the Acoustical Society of America, Vol. 123, No. 6, 2008, pp. 4082–4093. https://doi.org/10.1121/1.2903871 CrossrefGoogle Scholar

  • [12] Gee K. L., Downing J. M., James M. M., McKinley R. C., McKinley R. L., Neilsen T. B. and Wall A. T., “Nonlinear Evolution of Noise from a Military Aircraft During Ground Run-Up,” AIAA Paper 2012-2258, June 2012. https://doi.org/10.2514/6.2012-2258 Google Scholar

  • [13] Baars W. J., Tinney C. E., Wochner M. S. and Hamilton M. F., “On Cumulative Nonlinear Acoustic Waveform Distortions from High-Speed Jets,” Journal of Fluid Mechanics, Vol. 749, May 2014, pp. 331–366. https://doi.org/10.1017/jfm.2014.228 CrossrefGoogle Scholar

  • [14] Murray N. E. and Baars W. J., “Passive Nozzle-Based Technology for Reduction of Heated Supersonic Jet Noise,” AIAA Paper 2019-2729, May 2019. https://doi.org/10.2514/6.2019-2729 Google Scholar

  • [15] Daniel K., Mayo D., Lowe K. T. and Ng W. F., “Experimental Investigation of the Pressure Field of a Heated Supersonic Jet with a Centered Total Temperature Non-Uniformity,” AIAA Paper 2018-3145, June 2018. https://doi.org/10.25/6.2018-3145 Google Scholar

  • [16] Martens S., Spyropoulos J. T. and Nagel Z., “The Effect of Chevrons on Crackle—Engine and Scale Model Results,” ASME Turbo Expo 2011, American Soc. of Mechanical Engineers Paper GT2011-46417, Fairfield, NJ, 2011, pp. 315–326. https://doi.org/10.1115/GT2011-46417 Google Scholar

  • [17] Papamoschou D. and Debiasi M., “Directional Suppression of Noise from a High-Speed Jet,” AIAA Journal, Vol. 39, No. 3, 2001, pp. 380–387. https://doi.org/10.2514/2.1345 LinkGoogle Scholar

  • [18] Chen S. and Mihaescu M., “Nozzle Pressure Ratio Effects on Aerodynamics and Acoustics of a Highly-Heated Rectangular Supersonic Jet,” AIAA Paper 2019-2753, May 2019. https://doi.org/10.2514/6.2019-2753 Google Scholar

  • [19] Buchta D. A., Anderson A. T. and Freund J. B., “Near-Field Shocks Radiated by High-Speed Free-Shear Flow Turbulence,” AIAA Paper 2014-3201, June 2014. https://doi.org/10.2514/6.2014-3201 Google Scholar

  • [20] Anderson A. T. and Freund J. B., “Source Mechanisms of Jet Crackle,” AIAA Paper 2012-2251, June 2012. https://doi.org/10.2514/6.2012-2251 LinkGoogle Scholar

  • [21] Pineau P. and Bogey C., “Temperature Effects on Convection Speed and Steepened Waves of Temporally Developing Supersonic Jets,” AIAA Journal, Vol. 58, No. 3, 2020, pp. 1227–1239. https://doi.org/10.2514/1.J058589 LinkGoogle Scholar

  • [22] Nichols J. W., Lele S. K., Ham F. E., Martens S. and Spyropoulos J. T., “Crackle Noise in Heated Supersonic Jets,” Journal of Engineering for Gas Turbines and Power, Vol. 135, No. 5, April 2013, Paper 051202. https://doi.org/10.1115/1.4007867 CrossrefGoogle Scholar

  • [23] Nichols J. W., Lele S. K. and Spyropoulos J. T., “The Source of Crackle Noise in Heated Supersonic Jets,” AIAA Paper 2013-2197, June 2013. https://doi.org/10.2514/6.2013-2197 LinkGoogle Scholar

  • [24] Chen S., Gojon R. and Mihaescu M., “High-Temperature Effects on Aerodynamic and Acoustics Characteristics of a Rectangular Supersonic Jet,” AIAA Paper 2018-3303, June 2018. https://doi.org/10.2514/6.2018-3303 Google Scholar

  • [25] Langenais A., Vuillot F., Troyes J. and Bailly C., “Accurate Simulation of the Noise Generated by a Hot Supersonic Jet Including the Turbulence Tripping and Nonlinear Acoustic Propagation,” Physics of Fluid, Vol. 31, No. 1, 2019, Paper 01605. https://doi.org/10.1063/1.5050905 Google Scholar

  • [26] Laufer J., Schlinker R. and Kaplan R. E., “Experiments on Supersonic Jet Noise,” AIAA Journal Vol. 14, No. 4, April 1976, pp. 489–497. https://doi.org/10.2514/3.61388 LinkGoogle Scholar

  • [27] Schlinker R. H., Simonich J. C., Reba R. A., Colonius T. and Ladeinde F., “Decomposition of High Speed Jet Noise: Source Characteristics and Propagation Effects,” AIAA Paper 2008-2890, May 2008. https://doi.org/10.2514/6.2008-2890 Google Scholar

  • [28] Hileman J. I. and Samimy M., “Mach Number Effects on Jet Noise Sources and Radiation to Shallow Angles,” AIAA Journal, Vol. 44, No. 8, Aug. 2006. https://doi.org/10.2514/1.19959 Google Scholar

  • [29] Hileman J., Thurow B. and Samimy M., “Development and Evaluation of a 3-D Microphone Array Locate Individual Acoustic Sources in a High-Speed Jet,” Journal of Sound and Vibration, Vol. 276, Nos. 3–5, 2004, pp. 649–669. https://doi.org/10.1016/j.jsv.2003.08.022 CrossrefGoogle Scholar

  • [30] Gee K. L., Sparrow V. W., Atchley A. A. and Gabrielson T. B., “On the Perception of Crackle in High-Amplitude Jet Noise,” AIAA Journal, Vol. 45, No. 3, 2007, pp. 593–658. https://doi.org/10.2514/1.26484 LinkGoogle Scholar

  • [31] Swift S. H., Gee K. L. and Neilsen T. B., “Testing Two Crackle Criteria Using Modified Jet Noise Waveforms,” Journal of the Acoustical Society of America, Vol. 141, No. 6, 2017, pp. EL549–EL554. https://doi.org/10.1121/1.4984819 CrossrefGoogle Scholar

  • [32] Gee K. L., Russavage P. B., Neilsen T. B., Swift S. H. and Vaughn A. B., “Subjective Rating of the Jet Noise Crackle Percept,” Journal of the Acoustical Society of America, Vol. 144, No. 1, 2018, pp. EL40–EL45. https://doi.org/10.1121/1.5046094 CrossrefGoogle Scholar

  • [33] Russavage P. B., Neilsen T. B., Gee K. L. and Swift S. H., “Rating the Perception of Jet Noise Crackle,” Proceedings of Meetings on Acoustics, Vol. 33, No. 1, 2018, Paper 040001. https://doi.org/10.1121/2.0000821 Google Scholar

  • [34] James M. M., Salton A. R., Downing J. M., Gee K. L., Neilsen T. B., Reichman B. O., McKinley R. L., Wall A. T. and Gallagher H. L., “Acoustic Emissions from F-35B Aircraft During Ground Run-Up,” AIAA Paper 2015-2375, June 2015. https://doi.org/10.2514/6.2015-2375 Google Scholar

  • [35] Wall A. T., Leete K. M., Gee K. L., Neilsen T. B., James M. M. and McKinley R. L., “Preliminary Investigation of Multilobe Fighter Jet Noise Sources Using Acoustical Holography,” AIAA Paper 2017-3520, June 2017. https://doi.org/10.2514/6.2017-3520 LinkGoogle Scholar

  • [36] Swift S. H., Gee K. L., Neilsen T. B., Wall A. T., Downing J. M. and James M. M., “Spatiotemporal Correlation Analysis of Jet Noise from a Round-Nozzle Supersonic Aircraft,” AIAA Paper 2018-3938, June 2018. https://doi.org/10.2514/6.2018-3938 Google Scholar

  • [37] Neilsen T. B., Vaughn A. B., Gee K. L., Swift S. H., Wall A. T., Downing J. M. and James M. M., “Three-Way Spectral Decompositions of High-Performance Military Aircraft Noise,” AIAA Journal Vol. 57, No. 8, May 2019, pp. 3467–3479. https://doi.org/10.2514/1.J057992 LinkGoogle Scholar

  • [38] Leete K. M., Wall A. T., Gee K. L., Neilsen T. B., James M. M. and Downing J. M., “Dependence of High-Performance Military Aircraft Noise on Frequency and Engine Power,” AIAA Paper 2018-2826, June 2018. https://doi.org/10.2514/6.2018-2826 LinkGoogle Scholar

  • [39] Vaughn A. B., Gee K. L., Swift S. H., Wall A. T., Downing J. M. and James M. M., “Beamforming of Supersonic Jet Noise for Crackle-Related Events,” Proceedings of Meetings on Acoustics, Vol. 35, No. 1, 2018, Paper 040003. https://doi.org/10.1121/2.0000998 Google Scholar

  • [40] Schlinker R. H., Liljenberg S. A., Polak D. R., Post K. A., Chipman C. T. and Stern A. M., “Supersonic Jet Noise Source Characteristics and Propagation: Engine and Model Scale,” AIAA Paper 2007-3623, June 2007. https://doi.org/10.2514/6.2007-3623 Google Scholar

  • [41] Vaughn A. B., “Physical Characterization of Crackle-Related Events in Military Jet Aircraft Noise,” M.S. Thesis, Brigham Young Univ., Provo, UT, 2020. Google Scholar

  • [42] Bendat J. S. and Piersol A. G., “Stationary Random Processes,” Random Data Analysis and Measurement Procedures, 4th ed. Vol. 1, Wiley, New York, 2010, pp. 116–118. Google Scholar

  • [43] Gee K. L., Neilsen T. B., Wall A. T., Downing J. M., James M. M. and McKinley R. L., “Propagation of Crackle-Containing Jet Noise from High-Performance Engines,” Noise Control Engineering Journal, Vol. 64, No. 1, 2016, pp. 1–12. https://doi.org/10.3397/1/376354 CrossrefGoogle Scholar

  • [44] Karzova M. M., Lechat T., Ollivier S., Dragna D., Yuldashev P. V., Khokhlova V. A. and Blanc-Benon P., “Effect of Surface Roughness on Nonlinear Reflection of Weak Shock Waves,” Journal of the Acoustical Society of America, Vol. 146, No. 5, 2019, pp. EL438–EL443. Google Scholar

  • [45] Marchiano R., Coulouvrat F., Baskar S. and Thomas J. L., “Experimental Evidence of Deviation from Mirror Reflection for Acoustical Shock Waves,” Physical Review E, Vol. 76, No. 5, 2007, Paper 056602. https://doi.org/10.1103/PhysRevE.760566602 Google Scholar

  • [46] Stout T. A., Gee K. L., Neilsen T. B., Wall A. T. and James M. M., “Source Characterization of Full-Scale Jet Noise Using Acoustic Intensity,” Noise Control Engineering Journal, Vol. 63, No. 6, 2015, pp. 522–536. https://doi.org/10.3397/1/376346 CrossrefGoogle Scholar

  • [47] Nagamatsu H. T. and Horvay G., “Supersonic Jet Noise,” AIAA Paper 1970-0237, Jan. 1970. https://doi.org/10.2514/6.1970-237 Google Scholar

  • [48] Panda J., Seaholtz R. G. and Elam K. A., “Investigation of Noise Sources in High-Speed Jets via Correlation Measurements,” Journal of Fluid Mechanics, Vol. 537, Aug. 2005, pp. 349–385. https://doi.org/10.1017/S0022112005005148 CrossrefGoogle Scholar

  • [49] Tam C. K. W., Viswanathan K., Ahuja K. K. and Panda J., “The Sources of Jet Noise: Experimental Evidence,” Journal of Fluid Mechanics, Vol. 615, Nov. 2008, pp. 254–292. https://doi.org/10.1017/S0022112008003704 Google Scholar

  • [50] Leete K. M., Gee K. L., Liu J. and Wall A. T., “Coherences Analysis of the Noise from a Simulated Highly-Heated Laboratory-Scale Jet,” AIAA Journal, Vol. 58, No. 8, May 2020, pp. 3426–3435. https://doi.org/10.2514/1.J059112 LinkGoogle Scholar

  • [51] Tam C. K. W. and Auriault L., “Jet Mixing Noise from Fine-Scale Turbulence,” AIAA Journal, Vol. 37, No. 2, Feb. 1999, pp. 145–153. https://doi.org/10.2514/2.691 LinkGoogle Scholar

  • [52] Schmidt O. T. and Schmid P. J., “A Conditional Space-Time POD Formalism for Intermittent and Rare Events: Example of Acoustic Bursts in Turbulent Jets,” Journal of Fluid Mechanics, Vol. 867, May 2019, Paper R2. https://doi.org/10.1017/jfm.2019.200 CrossrefGoogle Scholar

  • [53] Bogey C. and Pineau P., “Potential-Core Closing of Temporally Developing Jets at Mach Numbers Between 0.3 and 2: Scaling and Conditional Averaging of Flow and Sound Fields,” Physical Review Fluids, Vol. 4, No. 12, Dec. 2019, Paper 124601. https://doi.org/10.1103/PhysRevFluids.4.124601 Google Scholar