Skip to main content
Skip to article control options
No AccessRegular Articles

Transitional Shock Boundary Layer Interactions on a Compression Ramp at Mach 4

Published Online:https://doi.org/10.2514/1.J059981

Strong laminar/transitional shock boundary layer interactions (SBLIs) have been investigated in a Mach 4 vacuum-driven wind tunnel with supporting computational fluid dynamics analysis. Such flows are extremely susceptible to large-scale separation, unsteadiness, and high surface heat flux, which can limit control authority on high-speed vehicles. The research community has heavily focused on turbulent interactions, leaving little understanding of how laminar/transitional cases behave with varying external parameters. Four compression ramp angles of 15, 18, 22, and 28° have been tested on a flat plate (unit Reynolds number Re1=4.56×106  1/m) with a range of external length scales (flat plate Reynolds number Rex varies between 1.2×105 and 2.5×105 at the ramp corner). Laminar separation was observed at boundary-layer thickness Reynolds number Reδ0 between 2700 and 4300, with the centerline length of separation L/δ0 scaling mildly with Reynolds number, increasing proportionally with Reδ00.4. Transitional reattachment is observed for strong SBLIs at higher values of Rex. Analysis of high-speed schlieren images shows that the separation shock exhibits low-frequency unsteadiness at a Strouhal number near StL=0.025, consistent with turbulent SBLIs. Detailed phase analysis of schlieren data shows no evidence of upstream influence. Instead, motion of the shear layer and reattachment shock precedes motion of the separation shock foot, suggesting a downstream unsteadiness mechanism. In addition, extensive analysis of subtle features within the interaction identified a slow-moving density disturbance within the bubble that convects toward the shock foot and directly leads separation shock motion. Negligible coherence was observed between low-frequency separation shock motion and acoustic content within the separation bubble.

References

  • [1] Clemens N. T. and Narayanaswamy V., “Low-Frequency Unsteadiness of Shock Wave/Turbulent Boundary Layer Interactions,” Annual Review of Fluid Mechanics, Vol. 46, No. 1, 2014, pp. 469–492. https://doi.org/10.1146/annurev-fluid-010313-141346 CrossrefGoogle Scholar

  • [2] Bruce P. J. K. and Babinsky H., “Unsteady Shock Wave Dynamics,” Journal of Fluid Mechanics, Vol. 603, May 2008, pp. 463–473. https://doi.org/10.1017/S0022112008001195 CrossrefGoogle Scholar

  • [3] Bernardini M., Pirozzoli S. and Grasso F., “The Wall Pressure Signature of Transonic Shock/Boundary Layer Interaction,” Journal of Fluid Mechanics, Vol. 671, Feb. 2011, pp. 288–312. https://doi.org/10.1017/S0022112010005677 CrossrefGoogle Scholar

  • [4] Pizzella M., Warning S. W., Jennerjohn M., McQuilling M., Purkey A., Scharnhorst R. and Mani M., “Shock-Wave/Boundary-Layer Interaction in a Large-Aspect-Ratio Test Section,” AIAA Journal, Vol. 55, No. 9, 2017, pp. 2919–2928. https://doi.org/10.2514/1.J055592 LinkGoogle Scholar

  • [5] Thomas F. O., Putnam C. M. and Chu H. C., “On the Mechanism of Unsteady Shock Oscillation in Shock Wave/Turbulent Boundary Layer Interactions,” Experiments in Fluids, Vol. 18, Dec. 1994, pp. 69–81. https://doi.org/10.1007/BF00209362 CrossrefGoogle Scholar

  • [6] Beresh S. J., Clemens N. T. and Dolling D. S., “Relationship Between Upstream Turbulent Boundary-Layer Velocity Fluctuations and Separation Shock Unsteadiness,” AIAA Journal, Vol. 40, No. 12, Dec. 2002, pp. 2412–2422. https://doi.org/10.2514/2.1609 LinkGoogle Scholar

  • [7] Ganapathisubramani B., Clemens N. T. and Dolling D. S., “Effects of Upstream Boundary Layer on the Unsteadiness of Shock-Induced Separation,” Journal of Fluid Mechanics, Vol. 585, Aug. 2007, pp. 369–394. https://doi.org/10.1017/S0022112007006799 CrossrefGoogle Scholar

  • [8] Priebe S. and Martín M. P., “Low-Frequency Unsteadiness in Shock Wave-Turbulent Boundary Layer Interaction,” Journal of Fluid Mechanics, Vol. 699, May 2012, pp. 1–49. https://doi.org/10.1017/jfm.2011.560 CrossrefGoogle Scholar

  • [9] Threadgill J. A. S. and Bruce P. J. K., “Unsteady Flow Features Across Different Shock/Boundary-Layer Interaction Configurations,” AIAA Journal, Vol. 58, No. 7, 2020, pp. 3063–3075. https://doi.org/10.2514/1.J058918 LinkGoogle Scholar

  • [10] Dupont P., Haddad C. and Debiève J.-F., “Space and Time Organization in a Shock-Induced Separated Boundary Layer,” Journal of Fluid Mechanics, Vol. 559, July 2006, pp. 255–277. https://doi.org/10.1017/S0022112006000267 CrossrefGoogle Scholar

  • [11] Pirozzoli S. and Grasso F., “Direct Numerical Simulation of Impinging Shock Wave/Turbulent Boundary Layer Interaction at M=2.25,” Physics of Fluids, Vol. 18, No. 6, 2006, Paper 065113. https://doi.org/10.1063/1.2216989 CrossrefGoogle Scholar

  • [12] Piponniau S., Dussauge J.-P., Debiève J.-F. and Dupont P., “A Simple Model for Low-Frequency Unsteadiness in Shock-Induced Separation,” Journal of Fluid Mechanics, Vol. 629, June 2009, pp. 87–108. https://doi.org/10.1017/S0022112009006417 CrossrefGoogle Scholar

  • [13] Souverein L. J., Dupont P., Debiève J.-F., Dussauge J.-P., Van Oudheusden B. W. and Scarano F., “Effect of Interaction Strength on Unsteadiness in Shock-Wave-Induced Separations,” AIAA Journal, Vol. 48, No. 7, 2010, pp. 1480–1493. https://doi.org/10.2514/1.J050093 LinkGoogle Scholar

  • [14] Touber E. and Sandham N. D., “Low-Order Stochastic Modelling of Low-Frequency Motions in Reflected Shock-Wave/Boundary-Layer Interactions,” Journal of Fluid Mechanics, Vol. 671, March 2011, pp. 417–465. https://doi.org/10.1017/S0022112010005811 CrossrefGoogle Scholar

  • [15] Settles G. S. and Dolling D. S., “Swept Shock Wave/Boundary-Layer Interactions,” Tactical Missile Aerodynamics: General Topics, edited by Hemsch M. J., Vol. 141, Progress in Astronautics & Aeronautics, AIAA, Washington, D.C., 1992, pp. 505–574, Chap. 12. Google Scholar

  • [16] Morgan B. E., Duraisamy K., Nguyen N., Kawai S. and Lele S. K., “Flow Physics and RANS Modelling of Oblique Shock/Turbulent Boundary Layer Interaction,” Journal of Fluid Mechanics, Vol. 729, July 2013, pp. 231–284. https://doi.org/10.1017/jfm.2013.301 Google Scholar

  • [17] Souverein L. J., Bakker P. G. and Dupont P., “A Scaling Analysis for Turbulent Shock-Wave/Boundary-Layer Interactions,” Journal of Fluid Mechanics, Vol. 714, Jan. 2013, pp. 505–535. https://doi.org/10.1017/jfm.2012.495 CrossrefGoogle Scholar

  • [18] Jaunet V., Debiève J.-F. and Dupont P., “Length Scales and Time Scales of a Heated Shock-Wave/Boundary-Layer Interaction,” AIAA Journal, Vol. 52, No. 11, 2014, pp. 2524–2532. https://doi.org/10.2514/1.J052869 LinkGoogle Scholar

  • [19] Dolling D. S., “Fifty Years of Shock-Wave/Boundary-Layer Interaction Research—What Next?AIAA Journal, Vol. 39, No. 8, 2001, pp. 1517–1531. https://doi.org/10.2514/3.14896 LinkGoogle Scholar

  • [20] Poggie J., Bisek N. J., Kimmel R. L. and Stanfield S. A., “Spectral Characteristics of Separation Shock Unsteadiness,” AIAA Journal, Vol. 53, No. 1, 2015, pp. 200–214. https://doi.org/10.2514/1.J053029 LinkGoogle Scholar

  • [21] Chapman D. R., Kuehn D. M. and Larson H. K., “Investigation of Separated Flows in Supersonic and Subsonic Streams with Emphasis on the Effect of Transition,” NACA TN 1356, Moffett Field, CA, 1958. Google Scholar

  • [22] Quadros R. and Bernardini M., “Numerical Investigation of Transitional Shock-Wave/Boundary-Layer Interaction in Supersonic Regime,” AIAA Journal, Vol. 56, No. 7, 2018, pp. 1–13. https://doi.org/10.2514/1.J056650 Google Scholar

  • [23] Giepman R. H. M., Schrijer F. F. J. and van Oudheusden B. W., “A Parametric Study of Laminar and Transitional Oblique Shock Wave Reflections,” Journal of Fluid Mechanics, Vol. 844, June 2018, pp. 187–215. https://doi.org/10.1017/jfm.2018.165 CrossrefGoogle Scholar

  • [24] Diop M., Piponniau S. and Dupont P., “High Resolution LDA Measurements in Transitional Oblique Shock Wave Boundary Layer Interaction,” Experiments in Fluids, Vol. 60, No. 4, 2019, pp. 1–15. https://doi.org/10.1007/s00348-019-2701-x Google Scholar

  • [25] Lusher D. J. and Sandham N. D., “The Effect of Flow Confinement on Laminar Shock-Wave/Boundary-Layer Interactions,” Journal of Fluid Mechanics, Vol. 897, Aug. 2020, p. A18. https://doi.org/10.1017/jfm.2020.354 Google Scholar

  • [26] Lusher D. J. and Sandham N. D., “Shock-Wave/Boundary-Layer Interactions in Transitional Rectangular Duct Flows,” Flow, Turbulence and Combustion, Vol. 105, No. 2, 2020, pp. 649–670. https://doi.org/10.1007/s10494-020-00134-0 CrossrefGoogle Scholar

  • [27] Bruce P. J. K., Burton D. M. F., Titchener N. A. and Babinsky H., “Corner Effect and Separation in Transonic Channel Flows,” Journal of Fluid Mechanics, Vol. 679, July 2011, pp. 247–262. https://doi.org/10.1017/jfm.2011.135 CrossrefGoogle Scholar

  • [28] Wang B., Sandham N. D., Hu Z. and Liu W., “Numerical Study of Oblique Shock-Wave/Boundary-Layer Interaction Considering Sidewall Effects,” Journal of Fluid Mechanics, Vol. 767, March 2015, pp. 526–561. https://doi.org/10.1017/jfm.2015.58 CrossrefGoogle Scholar

  • [29] Grossman I. J. and Bruce P. J. K., “Confinement Effects on Regularirregular Transition in Shock-Wave-Boundary-Layer Interactions,” Journal of Fluid Mechanics, Vol. 853, Oct. 2018, pp. 171–204. https://doi.org/10.1017/jfm.2018.537 CrossrefGoogle Scholar

  • [30] Xiang X. and Babinsky H., “Corner Effects for Oblique Shock Wave/Turbulent Boundary Layer Interactions in Rectangular Channels,” Journal of Fluid Mechanics, Vol. 862, March 2019, pp. 1060–1083. https://doi.org/10.1017/jfm.2018.983 CrossrefGoogle Scholar

  • [31] Sandham N. D., Schülein E., Wagner A., Willems S. and Steelant J., “Transitional Shock-Wave/Boundary-Layer Interactions in Hypersonic Flow,” Journal of Fluid Mechanics, Vol. 752, Aug. 2014, pp. 349–382. https://doi.org/10.1017/jfm.2014.333 CrossrefGoogle Scholar

  • [32] Klinner J., Hergt A., Grund S. and Willert C. E., “Experimental Investigation of Shock-Induced Separation And Flow Control in a Transonic Compressor Cascade,” Experiments in Fluids, Vol. 60, No. 6, 2019, pp. 1–18. https://doi.org/10.1007/s00348-019-2736-z CrossrefGoogle Scholar

  • [33] Lugrin M., Beneddine S., Leclercq C., Garnier E. and Bur R. S., “Transition Scenario in Hypersonic Axisymmetrical Compression Ramp Flow,” Journal of Fluid Mechanics, Vol. 907, Jan. 2021, p. A6. https://doi.org/10.1017/jfm.2020.833 Google Scholar

  • [34] Hildebrand N. J., Dwivedi A., Nichols J. W., Jovanović M. R. and Candler G. V., “Simulation and Stability Analysis of Oblique Shock-Wave/Boundary-Layer Interactions at Mach 5.92,” Physical Review Fluids, Vol. 3, No. 1, 2018, pp. 1–22. https://doi.org/10.1103/PhysRevFluids.3.013906 Google Scholar

  • [35] Sansica A., Sandham N. D. and Hu Z., “Instability and Low-Frequency Unsteadiness in a Shock-Induced Laminar Separation Bubble,” Journal of Fluid Mechanics, Vol. 798, July 2016, pp. 5–26. https://doi.org/10.1017/jfm.2016.297 CrossrefGoogle Scholar

  • [36] Whalen T. J., Kennedy R. E., Laurence S. J., Sullivan B., Bodony D. J. and Buck G. M., “Unsteady Surface and Flowfield Measurements in Ramp-Induced Turbulent and Transitional Shock-Wave Boundary-Layer Interactions at Mach 6,” AIAA Scitech 2019 Forum, AIAA Paper  2019-1127, Jan. 2019. https://doi.org/10.2514/6.2019-1127 Google Scholar

  • [37] Giepman R. H. M., Schrijer F. F. J. and Van Oudheusden B. W., “High-Resolution PIV Measurements of a Transitional Shock Wave–Boundary Layer Interaction,” Experiments in Fluids, Vol. 56, No. 6, 2015, Paper 113. https://doi.org/10.1007/s00348-015-1977-8 Google Scholar

  • [38] Sansica A., Sandham N. D. and Hu Z., “Forced Response of a Laminar Shock-Induced Separation Bubble,” Physics of Fluids, Vol. 26, No. 9, Sept. 2014, Paper 093601. https://doi.org/10.1063/1.4894427 CrossrefGoogle Scholar

  • [39] Combs C. S., Schmisseur J. D., Bathel B. F. and Jones S. B., “Unsteady Analysis of Shock-Wave/Boundary-Layer Interaction Experiments at Mach 4.2,” AIAA Journal, Vol. 57, No. 11, 2019, pp. 4715–4724. https://doi.org/10.2514/1.j058073 LinkGoogle Scholar

  • [40] Combs C. S., Lash E. L., Kreth P. A. and Schmisseur J. D., “Investigating Unsteady Dynamics of Cylinder-Induced Shock-Wave/Transitional Boundary-Layer Interactions,” AIAA Journal, Vol. 56, No. 4, 2018, pp. 1588–1599. https://doi.org/10.2514/1.J056553 LinkGoogle Scholar

  • [41] Larchevêque L., “Low- and Medium-Frequency Unsteadinesses in a Transitional Shock–Boundary Reflection with Separation,” 54th AIAA Aerospace Sciences Meeting, AIAA Paper 2016-1833, Jan. 2016, pp. 1–14. https://doi.org/10.2514/6.2016-1833 Google Scholar

  • [42] Hurst A. M., Olsen T. R., Goodman S., VanDeWeert J. and Shang T., “An Experimental Frequency Response Characterization of MEMS Piezoresistive Pressure Transducers,” ASME Turbo Expo 2014, ASME, Düsseldorf, Germany, 2014, pp. 1–15. Google Scholar

  • [43] Duan L., Choudhari M. M., Chou A., Munoz F., Radespiel R., Schilden T., Schröder W., Marineau E. C., Casper K. M., Chaudhry R. S., Candler G. V., Gray K. A. and Schneider S. P., “Characterization of Freestream Disturbances in Conventional Hypersonic Wind Tunnels,” Journal of Spacecraft and Rockets, Vol. 56, No. 2, 2019, pp. 357–368. https://doi.org/10.2514/1.A34290 LinkGoogle Scholar

  • [44] Metacomp Technologies, https://www.metacomptech.com/index.php/features/icfd [retrieved 5 Oct. 2021]. Google Scholar

  • [45] Menter F. R., “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications,” AIAA Journal, Vol. 32, No. 8, 1994, pp. 1598–1605. LinkGoogle Scholar

  • [46] Langtry R. B. and Menter F. R., “Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes,” AIAA Journal, Vol. 47, No. 12, 2009, pp. 2894–2906. LinkGoogle Scholar

  • [47] LINK3D Version 1.1.X Software User Manual,” GoHypersonic, Inc., Dayton, OH, 2018. Google Scholar

  • [48] Welch P. D., “The Use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging over Short, Modified Periodograms,” IEEE Transactions on Audio and Electroacoustics, Vol. AU-15, No. 2, 1967, pp. 70–73. CrossrefGoogle Scholar

  • [49] Threadgill J. A. S., Little J. C. and Wernz S. H., “Transitional Shock Wave Boundary Layer Interactions on a Compression Ramp at Mach 4,” AIAA Scitech 2019 Forum, AIAA Paper 2019-0343, Jan. 2019. https://doi.org/10.2514/6.2019-0343 Google Scholar

  • [50] White F. M., Viscous Fluid Flow, 3rd ed., McGraw–Hill, Singapore, 2006. Google Scholar

  • [51] Dupont P., Haddad C., Ardissone J. P. and Debiève J.-F., “Space and Time Organisation of a Shock Wave/Turbulent Boundary Layer Interaction,” Aerospace Science and Technology, Vol. 9, No. 7, 2005, pp. 561–572. https://doi.org/10.1016/j.ast.2004.12.009 CrossrefGoogle Scholar

  • [52] Plotkin K. J., “Shock Wave Oscillation Driven by Turbulent Boundary-Layer Fluctuations,” AIAA Journal, Vol. 13, No. 8, 1975, pp. 1036–1040. https://doi.org/10.2514/3.60501 LinkGoogle Scholar

  • [53] Dolling D. S. and Smith D. R., “Separation Shock Dynamics in Mach 5 Turbulent Interactions Induced by Cylinders,” AIAA Journal, Vol. 27, No. 12, 1989, pp. 1698–1707. LinkGoogle Scholar

  • [54] Dussauge J.-P., Dupont P. and Debiève J.-F., “Unsteadiness in Shock Wave Boundary Layer Interactions with Separation,” Aerospace Science and Technology, Vol. 10, No. 2, 2006, pp. 85–91. https://doi.org/10.1016/j.ast.2005.09.006 CrossrefGoogle Scholar

  • [55] Souverein L. J., Van Oudheusden B. W., Scarano F. and Dupont P., “Application of a Dual-Plane Particle Image Velocimetry (dual-PIV) Technique for the Unsteadiness Characterization of a Shock Wave Turbulent Boundary Layer Interaction,” Measurement Science and Technology, Vol. 20, No. 7, 2009, Paper 074003. https://doi.org/10.1088/0957-0233/20/7/074003 CrossrefGoogle Scholar

  • [56] Threadgill J. A. S., “Unsteadiness in Shock Wave Boundary Layer Interactions Across Multiple Interaction Configurations and Strengths,” Ph.D. Thesis, Imperial College London, London, 2017. Google Scholar