Skip to main content
Skip to article control options
No AccessRegular Articles

Rotor-Blade Planform Design Based on an Overset Harmonic-Balance-Adjoint Optimization Framework

Published Online:https://doi.org/10.2514/1.J060175

Optimization methods in conjunction with computational fluid dynamics are a key tool in advancing current rotor design. High-fidelity optimization of unsteady rotor flows in forward flight, however, is a challenging problem due to the high computational resources required. To minimize the computational costs, a fully turbulent, overset, adjoint harmonic-balance optimization framework has been developed, which maintains the fidelity of the Navier–Stokes equations. The framework is demonstrated in the aerodynamic redesign of the AH-64A rotor blade. An analysis of the optimized rotor blade is presented, including the key design features that contribute to the performance benefits in each of the examined design conditions. In particular, the benefits and drawbacks of rotor designs with an offloaded blade tip have been discussed. The formulation of the optimization objective function, blade surface parameterization, and treatment of trim were seen to have an impact on the final planform shape; and they have been deemed to be key in obtaining a practical rotor design suitable for use on real-life helicopters.

References

  • [1] Robinson K. and Brocklehurst A., “BERP IV Aerodynamics, Performance and Flight Envelope,” 34th European Rotorcraft Forum, RAeS, Liverpool, England, U.K., 2008, Paper 2b1. Google Scholar

  • [2] Rauch P., Gervais M., Cranga P., Baud A., Hirsch J., Walter A. and Beaumier P., “Blue Edge (TM): The Design, Development and Testing of a New Blade Concept,” American Helicopter Society 67th Annual Forum, AHS International, Virginia Beach, VA, 2011, Paper 43. Google Scholar

  • [3] New Chinook Composite Blades Proven,” online publication, The Boeing Company, Chicago, IL, 19 Jan. 2017, http://www.boeing.com/features/2017/01/chinook-blades-01-17.page [retrieved 22 March 2018]. Google Scholar

  • [4] Bousman W. and Kufeld R., “UH-60A Airloads Catalog,” NASA TM-2005-212827, 2005. Google Scholar

  • [5] Bender G., McMullin R., Voss J. and Adkins J., “First Article Preproduction Tests of the AH-64A Helicopter,” U.S. Army Aviation Systems Command TR AD-A170 594, 1984. Google Scholar

  • [6] Johnson W., “Performance and Loads Data from a Wind Tunnel Test of a Full-Scale Rotor with Four Blade Tip Planforms,” NASA TM-81229, 1980. Google Scholar

  • [7] Sandford R. and Belko R., “CH-47 Fiberglass Rotor Blade Design and Fabrication,” Journal of the American Helicopter Society, Vol. 27, No. 2, 1982, pp. 43–50. https://doi.org/10.4050/JAHS.27.2.43 Google Scholar

  • [8] Perry F., “Aerodynamics of the World Speed Record,” 43rd Annual Forum of the American Helicopter Society, AHS International, St. Louis, MO, 1987, Paper 1. Google Scholar

  • [9] JanakiRam R., Smith R., Charles B. and Hassan A., “Aerodynamic Design of a New Affordable Main Rotor for the Apache Helicopter,” American Helicopter Society 59th Annual Forum, AHS International, Phoenix, AZ, 2003, Paper 35. Google Scholar

  • [10] Johnson W., “CAMRAD/JA: A Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics,” Vols. 1–2, Johnson Aeronautics TR, Palo Alto, CA, 1988. Google Scholar

  • [11] Johnson W., “CAMRAD II: Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics,” Vol. VI, Johnson Aeronautics TR, Palo Alto, CA, 2002. Google Scholar

  • [12] Quackenbush T., Bliss D., Wachspress D. and Ong C., “Free Wake Analysis of Hover Performance Using a New Influence Coefficient Method,” NASA CR-4309, 1990. Google Scholar

  • [13] Kocurek J., Berkowitz L. and Harris F., “Hover Performance Methodology at Bell Helicopter Textron,” American Helicopter Society 36th Annual Forum, AHS International, Washington, D.C., 1980, Paper 3. Google Scholar

  • [14] Leusink D., Alfano D., Cinnella P. and Robinet J., “Aerodynamic Rotor Blade Optimization at Eurocopter—A New Way of Industrial Rotor Blade Design,” 51st AIAA Aerospace Sciences Meeting, AIAA Paper 2013-0779, 2013. Google Scholar

  • [15] Massaro A., D’Andrea A. and Benini E., “Multiobjective-Multipoint Rotor Blade Optimization in Forward Flight Conditions Using Surrogate-Assisted Memetic Algorithms,” 37th European Rotorcraft Forum, AIDAA, Cascina Costa, Italy, 2011, Paper 194. Google Scholar

  • [16] Desvigne D., Coisnon R., Michel B., Thomas A., Pinacho J. and Roca-Leon E., “Multi-Objective Industrial Optimization of High-Speed Helicopter Main Rotor Blades with Dynamically-Adapted Structural Properties,” 45th European Rotorcraft Forum, PSAA, Warsaw, Poland, 2019, Paper 136. Google Scholar

  • [17] Cooperation Agreement Between ONERA, JAXA and DLR for Rotor Optimisation Research Signed at Paris Air Show,” ONERA–The French Aerospace Lab, Palaiseau, France, June 2019, https://www.onera.fr/en/news/cooperation-agreement-between-onera-jaxa-and dlr-for-rotor-optimisation-research-signed-at-paris-air-show [retrieved 6 April 2020]. Google Scholar

  • [18] Imiela M., “High-Fidelity Optimization Framework for Helicopter Rotors,” Journal of Aerospace Science and Technology, Vol. 23, No. 1, 2012, pp. 2–16. https://doi.org/10.1016/j.ast.2011.12.011 CrossrefGoogle Scholar

  • [19] Le Pape A. and Beaumier P., “Numerical Optimization of Helicopter Rotor Aerodynamic Performance in Hover,” Journal of Aerospace Science and Technology, Vol. 9, No. 3, 2005, pp. 191–201. https://doi.org/10.1016/j.ast.2004.09.004 CrossrefGoogle Scholar

  • [20] Dumont A., Le Pape A., Peter J. and Huberson S., “Aerodynamic Shape Optimization of Hovering Rotors Using a Discrete Adjoint of the Reynolds-Averaged Navier–Stokes Equations,” Journal of the American Helicopter Society, Vol. 56, No. 3, 2011, pp. 1–11. https://doi.org/10.4050/JAHS.56.032002 CrossrefGoogle Scholar

  • [21] Lyu Z., Xu Z. and Martins J., “Benchmarking Optimization Algorithms for Wing Aerodynamic Design Optimization,” The Eighth International Conference on Computational Fluid Dynamics (ICCFD8), ICCFD, Chengdu, Sichuan, PRC, 2004, Paper 203. Google Scholar

  • [22] Sugiura M., Tanabe Y., Aoyama T., Ortun B. and Bailly J., “An ONERA/JAXA Co-operative Research on the Assessment of Aerodynamic Methods for the Optimization of Helicopter Rotor Blades, Phase II,” 42nd European Rotorcraft Forum, AAAF, Lille, France, 2016, Paper 34. Google Scholar

  • [23] Johnson C. and Barakos G., “Optimizing Rotor Blades with Approximate British Experimental Rotor Programme Tips,” Journal of Aircraft, Vol. 51, No. 2, 2014, pp. 447–463. https://doi.org/10.2514/1.C032042 LinkGoogle Scholar

  • [24] Zhu Z. and Zhao Q., “Optimization for Rotor Blade-Tip Planform with Low High-Speed Impulsive Noise Characteristics in Forward Flight,” Proceedings of IMechE. Part G: Journal of Aerospace Engineering, Vol. 231, No. 7, 2017, pp. 1312–1324. https://doi.org/10.1177/0954410016650908 CrossrefGoogle Scholar

  • [25] Zhao Q., Zhu Z., Yuan X. and Wang B., “Aerodynamic Geometry Optimization of Coaxial Rigid Rotors in Forward Flight,” American Helicopter Society 74th Annual Forum, AHS International, Phoenix, AZ, 2018, Paper 1315. Google Scholar

  • [26] Bailly J. and Bailly D., “Multifidelity Aerodynamic Optimization of a Helicopter Rotor Blade,” AIAA Journal, Vol. 57, No. 8, 2019, pp. 3132–3144. https://doi.org/10.2514/1.J056513 LinkGoogle Scholar

  • [27] Wilke G., “Multi-Objective Optimizations in Rotor Aerodynamics Using Variable Fidelity Simulations,” 39th European Rotorcraft Forum, Russian Helicopters, Moscow, Russia, 2013, Paper 17. Google Scholar

  • [28] Kenway G. T. and Martins J. R. R. A., “High-Fidelity Aerostructural Optimization Considering Buffet Onset,” AIAA Aviation 16th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, AIAA Paper 2015-2790, 2015. LinkGoogle Scholar

  • [29] Nielsen E. and Diskin B., “Discrete Adjoint-Based Design for Unsteady Turbulent Flows on Dynamic Overset Unstructured Grids,” AIAA Journal, Vol. 51, No. 6, 2013, pp. 1355–1373. https://doi.org/10.2514/1.J051859 LinkGoogle Scholar

  • [30] Wang L., Diskin B., Biedron R., Nielsen E. and Bachau O., “High-Fidelity Multidisciplinary Sensitivity Analysis and Design Optimization for Rotorcraft Applications,” AIAA Journal, Vol. 57, No. 8, 2019, pp. 1–15. https://doi.org/10.2514/1.J056587 Google Scholar

  • [31] Mishra A., Mani K., Mavriplis D. and Sitaraman J., “Helicopter Rotor Design Using Adjoint-Based Optimization in a Coupled CFD-CSD Framework,” American Helicopter Society 69th Annual Forum, AHS International, Phoenix, AZ, 2013, Paper 122. Google Scholar

  • [32] Fabiano E. and Mavriplis D., “Adjoint-Based Aeroacoustic Design-Optimization of Flexible Rotors in Forward Flight,” Journal of the American Helicopter Society, Vol. 62, No. 4, 2017, pp. 1–0. https://doi.org/10.4050/JAHS.62.042005 CrossrefGoogle Scholar

  • [33] Wang Q., Moin P. and Iaccarino G., “Minimal Repetition Dynamic Checkpointing Algorithm for Unsteady Adjoint Calculation,” SIAM Journal on Scientific Computing, Vol. 31, No. 4, 2009, pp. 2549–2567. https://doi.org/10.1137/080727890 CrossrefGoogle Scholar

  • [34] Beran P., Stanford B. and Kurdi M., “Sensitivity Analysis for Optimization of Dynamic Systems with Reduced Order Modeling,” 48th AIAA Aerospace Sciences Meeting, AIAA Paper 2010-1503, 2010. LinkGoogle Scholar

  • [35] Hall K., Thomas J. and Clark W., “Computation of Unsteady Nonlinear Flows in Cascades Using a Harmonic Balance Technique,” AIAA Journal, Vol. 40, No. 5, 2002, pp. 879–886. https://doi.org/10.2514/2.1754 LinkGoogle Scholar

  • [36] Sicot F., Gomar A., Dufour H. and Dugeai A., “Time-Domain Harmonic Balance Method for Turbomachinery Aeroelasticity,” AIAA Journal, Vol. 52, No. 1, 2014, pp. 62–71. https://doi.org/10.2514/1.J051848 LinkGoogle Scholar

  • [37] van der Weide E., Gopinath A. and Jameson A., “Turbomachinery Applications with the Time Spectral Method,” 35th AIAA Fluid Dynamics Conference and Exhibit, AIAA Paper 2005-4905, 2005. Google Scholar

  • [38] Ekici K., Hall K. and Dowell E., “Computationally Fast Harmonic Balance Methods for Unsteady Aerodynamic Predictions of Helicopter Rotors,” Journal of Computational Physics, Vol. 227, No. 12, 2008, pp. 6206–6225. https://doi.org/10.1016/j.jcp.2008.02.028 CrossrefGoogle Scholar

  • [39] Butsuntorn N. and Jameson A., “Time Spectral Method for Rotorcraft Flow,” 46th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2008-0403, 2008. LinkGoogle Scholar

  • [40] Choi S., Alonso J., van der Weide E. and Sitaraman J., “Validation Study of Aerodynamic Analysis Tools for Design Optimization of Helicopter Rotors,” 25th AIAA Applied Aerodynamics Conference, AIAA Paper 2007-3929, 2007. LinkGoogle Scholar

  • [41] Choi S. and Datta A., “Time-Spectral Method for CFD Prediction of Helicopter Rotor Vibratory Loads,” 5th International Conference on CFD, ICCFD, Seoul, ROK, 2008. Google Scholar

  • [42] Woodgate M. and Barakos G., “Implicit Computational Fluid Dynamics Methods for Fast Analysis of Rotor Flows,” AIAA Journal, Vol. 50, No. 6, 2012, pp. 1217–1244. https://doi.org/10.2514/1.J051155 LinkGoogle Scholar

  • [43] Li H. and Ekici K., “Aeroelastic Modeling of the AGARD 445.6 Wing Using the Harmonic-Balance-Based One-Shot Method,” AIAA Journal, Vol. 57, No. 11, 2019, pp. 4885–4902. https://doi.org/10.2514/1.J058363 LinkGoogle Scholar

  • [44] Nadarajah S., “Convergence Studies of the Time Accurate and Non-Linear Frequency Domain Methods for Optimum Shape Design,” International Journal of Computational Fluid Dynamics, Vol. 21, Nos. 5–6, 2007, pp. 189–207. https://doi.org/10.1080/10618560701577328 CrossrefGoogle Scholar

  • [45] Huang H. and Ekici K., “A Discrete Adjoint Harmonic Balance Method for Turbomachinery Shape Optimization,” Journal of Aerospace Science and Technology, Vol. 39, Dec. 2014, pp. 481–490. https://doi.org/10.1016/j.ast.2014.05.015 CrossrefGoogle Scholar

  • [46] Rubino A., Pini M., Colonna P., Albring T., Nimmagadda S., Economon T. and Alonso J., “Adjoint-Based Fluid Dynamic Design Optimization in Quasi-Periodic Unsteady Flow Problems Using a Harmonic Balance Method,” Journal of Computational Physics, Vol. 372, Nov. 2018, pp. 220–235. https://doi.org/10.1016/j.jcp.2018.06.023 CrossrefGoogle Scholar

  • [47] Rubino A., “Reduced Order Models for Unsteady Fluid Dynamic Optimization of Turbomachinery,” Ph.D. Thesis, Delft Univ. of Technology, Delft, The Netherlands, 2019. Google Scholar

  • [48] Vitale S., Pini M. and Colonna P., “Multistage Turbomachinery Design Using the Discrete Adjoint Method Within the Open-Source Software SU2,” Journal of Propulsion and Power, Vol. 36, No. 3, 2020, pp. 465–478. https://doi.org/10.2514/1.B37685 LinkGoogle Scholar

  • [49] He S., Jonsson E., Mader C. A. and Martins J. R. R. A., “Aerodynamic Shape Optimization with Time Spectral Flutter Adjoint,” AIAA SciTech Forum, AIAA Paper 2019-0697, 2019. LinkGoogle Scholar

  • [50] Prasad R. and Choi S., “Aerodynamic Shape Optimization for Flutter/LCO Based Design Using Coupled Adjoint,” AIAA SciTech Forum, AIAA Paper 2020-0405, 2020. Google Scholar

  • [51] He S., Luder A., Mader C., Maki K. and Martins J., “A Time-Spectral Adjoint Approach for Aerodynamic Shape Optimization Under Periodic Wakes,” AIAA SciTech Forum, AIAA Paper 2020-2114, 2020. Google Scholar

  • [52] Choi S., Lee K., Potsdam M. and Alonso J., “Helicopter Rotor Design Using a Time-Spectral and Adjoint-Based Method,” Journal of Aircraft, Vol. 51, No. 2, 2014, pp. 412–423. https://doi.org/10.2514/1.C031975 LinkGoogle Scholar

  • [53] Kim H., “Coupled Adjoint-Based Sensitivity Analysis Using a FSI Method in Time Spectral Form,” Ph.D. Thesis, Virginia Polytechnic Inst. and State Univ., Blacksburg, VA, 2019. Google Scholar

  • [54] Steijl R., Barakos G. N. and Badcock K., “A Framework for CFD Analysis of Helicopter Rotors in Hover and Forward Flight,” International Journal for Numerical Methods in Fluids, Vol. 51, No. 8, 2006, pp. 819–847. https://doi.org/10.1002/d.1086 CrossrefGoogle Scholar

  • [55] Steijl R. and Barakos G. N., “Sliding Mesh Algorithm for CFD Analysis of Helicopter Rotor-Fuselage Aerodynamics,” International Journal for Numerical Methods in Fluids, Vol. 58, No. 5, 2008, pp. 527–549. https://doi.org/10.1002/d.1757 CrossrefGoogle Scholar

  • [56] Engquist B. and Osher S., “One-Sided Difference Approximations for Nonlinear Convervations Laws,” Journal of Mathematics of Computation, Vol. 36, No. 154, 1981, pp. 321–351. https://doi.org/10.1016/0021-9991(83)90106-7 Google Scholar

  • [57] van Leer B., “Towards the Ultimate Conservative Difference Scheme. V.A Second-Order Sequel to Godunov’s Method,” Journal of Computational Physics, Vol. 32, No. 1, 1979, pp. 101–136. https://doi.org/10.1016/0021-9991(79)90145-1 CrossrefGoogle Scholar

  • [58] van Albada G. D., van Leer B. and Roberts W. W., “A Comparative Study of Computational Methods in Cosmic Gas Dynamics,” Astronomy and Astrophysics, Vol. 108, No. 1, 1982, pp. 76–84. https://doi.org/10.1007/978-3-642-60543-7 Google Scholar

  • [59] Jameson A., “Time-Dependent Calculations Using Multigrid, with Applications to Unsteady Flows Past Airfoils and Wings,” AIAA 10th Computational Fluid Dynamics Conference, AIAA Paper 1991-1596, 1991. LinkGoogle Scholar

  • [60] Axelsson O., Iterative Solution Methods, Cambridge Univ. Press, Cambridge, England, U.K., 1994, pp. 504–555. CrossrefGoogle Scholar

  • [61] Woodgate M. and Barakos G., “An Implicit Hybrid Method for the Computation of Rotorcraft Aerodynamic Flows,” AIAA SciTech Forum, 54th Aerospace Sciences Meeting, AIAA Paper 2016-0811, 2016. LinkGoogle Scholar

  • [62] Menter F. R., “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications,” AIAA Journal, Vol. 32, No. 8, 1994, pp. 1598–1605. https://doi.org/10.2514/3.12149 LinkGoogle Scholar

  • [63] Fitzgibbon T., Woodgate M. and Barakos G., “Assessment of the Harmonic Balance Method for Rotor Blade Performance Predictions,” 45th European Rotorcraft Forum, PSAA, Warsaw, Poland, 2019, Paper 77. Google Scholar

  • [64] Saad Y. and Schultz M., “GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems,” SIAM Journal on Scientific and Statistical Computing, Vol. 7, No. 3, 1986, pp. 856–869. https://doi.org/10.1137/0907058 CrossrefGoogle Scholar

  • [65] Hascoët L. and Pascual V., “The Tapenade Automatic Differentiation Tool: Principles, Model, and Specification,” ACM Transactions on Mathematical Software, Vol. 39, No. 3, 2013. https://doi.org/10.1145/2450153.2450158 CrossrefGoogle Scholar

  • [66] Biava M., Woodgate M. and Barakos G., “Fully Implicit Discrete-Adjoint Methods for Rotorcraft Applications,” AIAA Journal, Vol. 54, No. 2, 2016, pp. 735–748. https://doi.org/10.2514/1.J054006 LinkGoogle Scholar

  • [67] Biava M. and Barakos G., “Optimisation of Ducted Propellers for Hybrid Air Vehicles Using High-Fidelity CFD,” Aeronautical Journal, Vol. 120, No. 1232, 2016, pp. 1632–1657. https://doi.org/10.1017/aer.2016.78 CrossrefGoogle Scholar

  • [68] Kraft D., “Algorithm 733: TOMP-Fortran Modules for Optimal Control Calculations,” ACM Transactions on Mathematical Software, Vol. 20, No. 3, 1994, pp. 262–281. https://doi.org/10.1145/192115.192124 CrossrefGoogle Scholar

  • [69] Liu C. and Nocedal J., “On the Limited Memory BFGS Method for Large Scale Optimization,” Mathematical Programming, Vol. 45, Aug. 1989, pp. 503–528. https://doi.org/10.1007/BF01589116 CrossrefGoogle Scholar

  • [70] Bernstein S., “Demonstration du Theoreme de Weierstrass Fondee sur le Calcul Desprobabilites,” Communications of the Kharkov Mathematical Society, Vol. 13, No. 1, 1912, pp. 1–2. Google Scholar

  • [71] Bender G., Diekmann V., Ottomeyer J., Picasso B. and Higgins L., “Engineering Design Test 4, YAH-64 Advanced Attack Helicopter,” U.S. Army Engineering Flight Activity TR USAAEFA 80-03, 1980. Google Scholar

  • [72] Berry J., “Helicopter Blade Dynamic Loads Measured During Performance Testing of Two Scaled Rotors,” NASA TM-89053, 1987. Google Scholar

  • [73] McCroskey W. J., McAlister K. W., Carr L. W. and Pucci S. L., “An Experimental Study of Dynamic Stall on Advanced Airfoil Sections,” Vol. 1: Summary of the Experiment, NASA TM-84245, 1982. Google Scholar

  • [74] Loftin L., “Theoretical and Experimental Data for a Number of NACA 6A-Series Airfoil Sections,” NASA TR-903, 1948. Google Scholar

  • [75] Srinivasan G. R., Raghavan V., Duque E. P. N. and McCroskey W. J., “Flowfield Analysis of Modern Helicopter Rotors in Hover by Navier–Stokes Method,” Journal of the American Helicopter Society, Vol. 38, No. 3, 1993, pp. 3–13. https://doi.org/10.4050/JAHS.38.3.3 Google Scholar

  • [76] Kunz D. and Jones H., “Modelling and Simulation of the Apache Rotor System in CAMRAD II,” American Helicopter Society Structure Specialists’ Meeting, AHS International, Williamsburg, VA, 2001. Google Scholar