Skip to main content
Skip to article control options
No AccessRegular Articles

Aerodynamic Analysis and Optimization of Gliding Locust Wing Using Nash Genetic Algorithm

Published Online:https://doi.org/10.2514/1.J060298

Natural fliers glide and minimize wing articulation to conserve energy for endured and long-range flights. Elucidating the underlying physiology of such a capability could potentially address numerous challenging problems in flight engineering. This study investigates the aerodynamic characteristics of an insect species called desert locust (Schistocerca gregaria) with extraordinary gliding skills at low Reynolds numbers. Here, locust tandem wings are subjected to a computational fluid dynamics (CFD) simulation using two-dimensional and three-dimensional (3-D) Navier–Stokes equations, revealing fore–hindwing interactions and the influence of their corrugations on aerodynamic performance. Furthermore, the obtained CFD results are mathematically parameterized using the PARSEC method and optimized based on a novel fusion of genetic algorithms and Nash game theory to achieve Nash equilibrium. It was concluded that the lift–drag (gliding) ratio of the optimized profiles were improved by at least 77% and 150% compared to the original wing and the published literature, respectively. Ultimately, the profiles are integrated and analyzed using 3-D CFD simulations that demonstrated a 14% performance improvement, validating the proposed wing models for further fabrication and rapid prototyping presented in a future study.

References

  • [1] Rayleigh J. W. S., “The Soaring of Birds,” Nature, Vol. 27, No. 701, 1883, pp. 534–535. https://doi.org/10.1038/027534a0 CrossrefGoogle Scholar

  • [2] Walker G., “The Flapping Flight of Birds,” Royal Aeronautical Society, Vol. 29, No. 179, 1925, pp. 590–594. https://doi.org/10.1017/S0368393100134613 Google Scholar

  • [3] Ellington C. P., “The Aerodynamics of Hovering Insect Flight. 3. Kinematics,” Philosophical Transactions of the Royal Society of London B: Biological Sciences, Vol. 305, No. 1122, 1984, pp. 41–78. https://doi.org/10.1098/rstb.1984.0051 CrossrefGoogle Scholar

  • [4] Ellington C. P., “The Aerodynamics of Hovering Insect Flight. 4. Aeorodynamic Mechanisms,” Philosophical Transactions of the Royal Society of London B: Biological Sciences, Vol. 305, No. 1122, 1984, pp. 79–113. https://doi.org/10.1098/rstb.1984.0052 CrossrefGoogle Scholar

  • [5] Ellington C. P., “The Aerodynamics of Hovering Insect Flight. 6. Lift and Power Requirements,” Philosophical Transactions of the Royal Society of London B: Biological Sciences, Vol. 305, No. 1122, 1984, pp. 145–181. https://doi.org/10.1098/rstb.1984.0054 CrossrefGoogle Scholar

  • [6] Du G. and Sun M., “Aerodynamic Effects of Corrugation and Deformation in Flapping Wings of Hovering Hoverflies,” Journal of Theoretical Biology, Vol. 300, May 2012, pp. 19–28. https://doi.org/10.1016/j.jtbi.2012.01.010 CrossrefGoogle Scholar

  • [7] Henningsson P., Hedenström A. and Bomphrey R. J., “Efficiency of Lift Production in Flapping and Gliding Flight of Swifts,” PLOS One, Vol. 9, No. 2, 2014, pp. 1–7. https://doi.org/10.1371/journal.pone.0090170 Google Scholar

  • [8] Hou D., Yin Y., Zhong Z. and Zhao H., “A New Torsion Control Mechanism Induced by Blood Circulation in Dragonfly Wings,” Bioinspiration & Biomimetics, Vol. 10, No. 1, 2015, pp. 1–10. https://doi.org/10.1088/1748-3190/10/1/016020 Google Scholar

  • [9] Kim J. K. and Han J. H., “A Multibody Approach for 6-DOF Flight Dynamics and Stability Analysis of the Hawkmoth Manduca sexta,” Bioinspiration & Biomimetics, Vol. 9, No. 1, 2014, pp. 1–22. https://doi.org/10.1088/1748-3182/9/1/016011 Google Scholar

  • [10] Koehler C., Liang Z., Gaston Z., Wan H. and Dong H., “3D Reconstruction and Analysis of Wing Deformation in Free-Flying Dragonflies,” Journal of Experimental Biology, Vol. 215, No. 17, 2012, pp. 3018–3027. https://doi.org/10.1242/jeb.069005 CrossrefGoogle Scholar

  • [11] Kesel A. B., “Aerodynamic Characteristics of Dragonfly Wing Sections Compared with Technical Aerofoils,” Journal of Experimental Biology, Vol. 203, No. 20, 2000, pp. 3125–3135. CrossrefGoogle Scholar

  • [12] Kim W. K., Ko J. H., Park H. C. and Byun D., “Effects of Corrugation of the Dragonfly Wing on Gliding Performance,” Journal of Theoretical Biology, Vol. 260, No. 4, 2009, pp. 523–530. https://doi.org/10.1016/j.jtbi.2009.07.015 CrossrefGoogle Scholar

  • [13] Meng X. and Sun M., “Aerodynamic Effects of Corrugation in Flapping Insect Wings in Forward Flight,” Journal of Bionic Engineering, Vol. 8, No. 2, 2011, pp. 140–150. https://doi.org/10.1016/S1672-6529(11)60015-2 CrossrefGoogle Scholar

  • [14] Xiang J., Du J., Li D. and Liu K., “Aerodynamic Performance of the Locust Wing in Gliding Mode at Low Reynolds Number,” Journal of Bionic Engineering, Vol. 13, No. 2, 2016, pp. 249–260. https://doi.org/10.1016/S1672-6529(16)60298-6 CrossrefGoogle Scholar

  • [15] Murphy J. T. and Hu H., “An Experimental Study of a Bio-Inspired Corrugated Airfoil for Micro Air Vehicle Applications,” Experiments in Fluids, Vol. 49, No. 2, 2010, pp. 531–546. https://doi.org/10.1007/s00348-010-0826-z CrossrefGoogle Scholar

  • [16] Luca M., Mintchev S., Heitz G., Noca F. and Floreano D., “Bioinspired Morphing Wings for Extended Flight Envelope and Roll Control of Small Drones,” Interface Focus, Vol. 7, No. 1, 2017, pp. 1–11. Google Scholar

  • [17] Rival D. E., Hass G. and Tropea C., “Recovery of Energy from Leading- and Trailing-Edge Vortices in Tandem-Airfoil Configurations,” Journal of Aircraft, Vol. 48, Nos. 1–2, 2011, pp. 203–211. https://doi.org/10.2514/1.C031062 LinkGoogle Scholar

  • [18] Broering T. M. and Lian Y. S., “The Effect of Phase Angle and Wing Spacing on Tandem Flapping Wings,” Acta Mechanica Sinica, Vol. 28, No. 6, 2012, pp. 1557–1571. https://doi.org/10.1007/s10409-012-0210-8 CrossrefGoogle Scholar

  • [19] Broering T. M., Lian Y. and Henshaw W., “Numerical Investigation of Energy Extraction in a Tandem Flapping Wing Configuration,” AIAA Journal, Vol. 50, No. 11, 2012, pp. 2295–2307. https://doi.org/10.2514/1.J051104 LinkGoogle Scholar

  • [20] Levy D. E. and Seifert A., “Simplified Dragonfly Airfoil Aerodynamics at Reynolds Numbers Below 8000,” Journal of Physics of Fluids, Vol. 21, No. 7, 2009, Paper 071901. https://doi.org/10.1063/1.3166867 Google Scholar

  • [21] Isakhani H., Aouf N., Kechagias-Stamatis O. and Whidborne J. F., “A Furcated Visual Collision Avoidance System for an Autonomous Micro Robot,” IEEE Transactions on Cognitive and Developmental Systems, Vol. 12, No. 1, 2018, pp. 1–11. https://doi.org/10.1109/TCDS.2018.2858742 Google Scholar

  • [22] Yue S. and Rind F. C., “Redundant Neural Vision Systems—Competing for Collision Recognition Roles,” IEEE Transactions on Autonomous Mental Development, Vol. 5, No. 2, 2013, pp. 173–186. https://doi.org/10.1109/TAMD.2013.2255050 Google Scholar

  • [23] Yue S. and Rind F. C., “Near Range Path Navigation Using LGMD Visual Neural Networks,” Proceedings of International Conference Computer Science and Information Technology, Aug. 2009, pp. 105–109. https://doi.org/10.1109/ICCSIT.2009.5234439 Google Scholar

  • [24] Lorenz M. W., “Migration and Trans-Atlantic Flight of Locusts,” Journal of Quaternary International, Vol. 196, Nos. 1–2, 2009, pp. 4–0. https://doi.org/10.1016/j.quaint.2007.09.038 Google Scholar

  • [25] Weis-Fogh T., “Biology and Physics of Locust Flight. 2. Flight Performance of the Desert Locust (Schistocerca gregaria),” Philosophical Transactions of the Royal Society of London B: Biological Sciences, Vol. 239, No. 667, 1956, pp. 459–510. https://doi.org/10.1098/rstb.1956.0008 CrossrefGoogle Scholar

  • [26] Jensen M., “Biology and Physics of Locust Flight. 3. The Aerodynamics of Locust Flight,” Philosophical Transactions of the Royal Society of London B: Biological Sciences, Vol. 239, No. 667, 1956, pp. 511–552. https://doi.org/10.1098/rstb.1956.0009 CrossrefGoogle Scholar

  • [27] Cloupeau M., Devillers J. F. and Devezeaux D., “Direct Measurements of Instantaneous Lift in Desert Locust; Comparison with Jensen’s Experiments on Detached Wings,” Journal of Experimental Biology, Vol. 80, No. 1, 1979, pp. 1–15. Google Scholar

  • [28] Shkarayev S. and Kumar R., “Instantaneous Forces in Locust Flapping Wings,” AIAA Paper 2014-2834, June 2014. Google Scholar

  • [29] Shkarayev S. and Kumar R., “Kinematics and Inertial Effects in Locust Flapping Wings,” Experimental Mechanics, Vol. 56, No. 2, 2016, pp. 245–258. https://doi.org/10.1007/s11340-015-0093-2 CrossrefGoogle Scholar

  • [30] Simmons P. J., Rind F. C. and Santer R. D., “Escapes with and Without Preparation: The Neuroethology of Visual Startle in Locusts,” Journal of Insect Physiology, Vol. 56, No. 8, 2010, pp. 876–883. https://doi.org/10.1016/j.jinsphys.2010.04.015 Google Scholar

  • [31] Walker S. M., Thomas A. L. R. and Taylor G. K., “Deformable Wing Kinematics in the Desert Locust: How and Why Do Camber, Twist and Topography Vary Through the Stroke?Journal of the Royal Society Interface, Vol. 6, No. 38, 2009, pp. 735–747. https://doi.org/10.1098/rsif.2008.0435 CrossrefGoogle Scholar

  • [32] Kovač M., Fauria O., Zufferey J. and Floreano D., “The EPFL Jumpglider: A Hybrid Jumping and Gliding Robot with Rigid or Folding Wings,” IEEE International Conference Robotics and Biomimetics, Dec. 2011, pp. 1503–1508. https://doi.org/10.1109/ROBIO.2011.6181502 Google Scholar

  • [33] Henningsson P., Michaelis D., Nakata T., Schanz D., Geisler R., Schröder A. and Bomphrey R. J., “The Complex Aerodynamic Footprint of Desert Locusts Revealed by Large-Volume Tomographic Particle Image Velocimetry,” Journal of the Royal Society Interface, Vol. 12, No. 108, 2015, pp. 1–11. https://doi.org/10.1098/rsif.2015.0119 Google Scholar

  • [34] Henningsson P. and Bomphrey R. J., “Time-Varying Span Efficiency Through the Wingbeat of Desert Locusts,” Journal of the Royal Society Interface, Vol. 9, No. 71, 2012, pp. 1177–1186. https://doi.org/10.1098/rsif.2011.0749 CrossrefGoogle Scholar

  • [35] Le T. Q., Truong T. V., Park S. H., Truong T. Q., Ko J. H., Park H. C. and Byun D., “Improvement of the Aerodynamic Performance by Wing Flexibility and Elytra-Hind Wing Interaction of a Beetle During Forward Flight,” Journal of the Royal Society Interface, Vol. 10, No. 85, 2013, pp. 1–15. https://doi.org/10.1098/rsif.2013.0312 Google Scholar

  • [36] Samareh J. A., “A Survey of Shape Parameterization Techniques,” CEAS/AIAA/ICASE/NASA Langley International Forum on Aeroelasticity and Structural Dynamics, 1999, pp. 333–344. Google Scholar

  • [37] Sobieczky H., “Geometry Generator for CFD and Applied Aerodynamics,” New Design Concepts for High Speed Air Transport, edited by Sobieczky H., Vol. 366, International Centre for Mechanical Sciences (Courses and Lectures), Springer, Vienna, 1997, pp. 137–158. https://doi.org/10.1007/978-3-7091-2658-5_9 Google Scholar

  • [38] Sobieczky H., “Parametric Airfoils and Wings,” Recent Development of Aerodynamic Design Methodologies, edited by Fujii K. and Dulikravich G. S., Notes on Numerical Fluid Mechanics (NNFM), Vol. 65, Springer, 1998, pp. 71–88. https://doi.org/10.1007/978-3-322-89952-1_4 Google Scholar

  • [39] Kennedy J. and Eberhart R., “Particle Swarm Optimization,” Proceedings of IEEE International Conference Neural Networks, Vol. 4, 1995, pp. 1942–1948. https://doi.org/10.1109/ICNN.1995.488968 Google Scholar

  • [40] Boggs P. T. and Tolle J. W., “Sequential Quadratic Programming,” Acta Numerica, Vol. 4, Jan. 1996, pp. 1–51. https://doi.org/10.1017/S0962492900002518 CrossrefGoogle Scholar

  • [41] Goldberg D. E., Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-Wesley Longman Publishing Co., Inc., Boston, MA, 1989, pp. 211–372. Google Scholar

  • [42] Srinivas N. and Deb K., “Multiobjective Optimisation Using Non-Dominated Sorting in Genetic Algorithms,” Evolutionary Computation, Vol. 2, No. 3, 1994, pp. 221–248. https://doi.org/10.1162/evco.1994.2.3.22 CrossrefGoogle Scholar

  • [43] Nash J., “Non-Cooperative Games,” Annals of Mathematics, Vol. 54, No. 2, 1951, pp. 286–295. https://doi.org/10.2307/1969529 CrossrefGoogle Scholar

  • [44] Taylor G. K. and Thomas A. L. R., “Dynamic Flight Stability in the Desert Locust Schistocerca gregaria,” Journal of Experimental Biology, Vol. 206, No. 16, 2003, pp. 2803–2829. https://doi.org/10.1242/jeb.00501 CrossrefGoogle Scholar

  • [45] Kesel A. B., Philippi U. and Nachtigall W., “Biomechanical Aspects of the Insect Wing: An Analysis Using the Finite Element Method,” Journal of Computers in Biology and Medicine, Vol. 28, No. 4, 1998, pp. 423–437. https://doi.org/10.1016/S0010-4825(98)00018-3 CrossrefGoogle Scholar

  • [46] Chen Y. H. and Skote M., “Gliding Performance of 3-D Corrugated Dragonfly Wing with Spanwise Variation,” Journal of Fluids and Structures, Vol. 62, April 2016, pp. 1–13. https://doi.org/10.1016/j.jfluidstructs.2015.12.012 CrossrefGoogle Scholar

  • [47] Anderson J. D., “Aerodynamics: Some Introductory Thoughts,” Fundamentals of Aerodynamics, 5th ed., McGraw-Hill, New York, 2011, pp. 3–102. Google Scholar

  • [48] Hu H. and Tamai M., “Bioinspired Corrugated Airfoil at Low Reynolds Numbers,” Journal of Aircraft, Vol. 45, No. 6, 2008, pp. 2068–2077. https://doi.org/10.2514/1.37173 LinkGoogle Scholar

  • [49] Spalart P. and Allmaras S., “A One-Equation Turbulence Model for Aerodynamic Flows,” Recherche Aerospatiale, Vol. 1, Jan. 1992, pp. 5–21. https://doi.org/10.2514/6.1992-439 Google Scholar

  • [50] Isakhani H., Xiong C., Yue S. and Chen W., “A Bioinspired Airfoil Optimization Technique Using Nash Genetic Algorithm,” Proceedings of International Conference on Ubiquitous Robots (UR), 2020, pp. 506–513. Google Scholar

  • [51] Della Vecchia P., Daniele E. and D’Amato E., “An Airfoil Shape Optimization Technique Coupling PARSEC Parameterization and Evolutionary Algorithm,” Journal of Aerospace Science and Technology, Vol. 32, No. 1, 2014, pp. 103–110. https://doi.org/10.1016/j.ast.2013.11.006 CrossrefGoogle Scholar

  • [52] Basar T. and Olsder G. J., “Noncooperative Finite Games: N-Person Nonzero-Sum,” Dynamic Noncooperative Game Theory, Vol. 23, Academic Press, New York, 1995, pp. 77–160. Google Scholar

  • [53] Haupt R. L. and Haupt S. E., Practical Genetic Algorithms, Wiley, Hoboken, NJ, 1998, pp. 105–272. Google Scholar

  • [54] D’Amato E., Daniele E., Mallozzi L. and Petrone G., “Equilibrium Strategies via GA to Stackelberg Games Under Multiple Follower’s Best Reply,” International Journal of Intelligent Systems, Vol. 27, No. 2, 2012, pp. 74–85. Google Scholar

  • [55] D’Amato E., Daniele E., Mallozzi L., Petrone G. and Tancredi S., “A Hierarchical Multimodal Hybrid Stackelberg–Nash GA for a Leader with Multiple Followers Game,” Dynamics of Information Systems: Mathematical Foundations, Vol. 20, Springer, New York, 2012, pp. 267–280. https://doi.org/10.1007/978-1-4614-3906-6_14 Google Scholar

  • [56] Fudenberg D. and Tirole J., Game Theory, MIT Press, Cambridge, MA, 1991, pp. 43–604. Google Scholar

  • [57] Drela M. and Youngren H., “XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils,” Low Reynolds Number Aerodynamics. Lecture Notes in Engineering, edited by Mueller T. J., Springer, Berlin, 1989, pp. 1–0. https://doi.org/10.1007/978-3-642-84010-4_1 Google Scholar

  • [58] Deng J., Zhang L., Liu Z. and Mao X., “Numerical Prediction of Aerodynamic Performance for a Flying Fish During Gliding Flight,” Bioinspiration & Biomimetics, Vol. 14, No. 4, 2019, pp. 1–13. https://doi.org/10.1088/1748-3190/ab23e6 Google Scholar

  • [59] Okamoto M., Yasuka K. and Azuma A., “Aerodynamic Characteristics of the Wings and Body of a Dragonfly,” Journal of Experimental Biology, Vol. 199, No. 2, 1996, pp. 281–294. CrossrefGoogle Scholar

  • [60] Isakhani H., Yue S., Xiong C., Chen W., Sun X. and Liu T., “Fabrication and Mechanical Analysis of Bioinspired Gliding-Optimized Wing Prototypes for Micro Aerial Vehicles,” Proceedings of IEEE International Conference Advanced Robotics and Mechatronics (ARM), 2020, pp. 602–608. Google Scholar

  • [61] Baker P. S. and Cooter R. J., “The Natural Flight of the Migratory Locust, Locusta migratoria L. 2. Gliding,” Journal of Comparative Physiology, Vol. 131, March 1979, pp. 89–94. https://doi.org/10.1007/BF00613087 Google Scholar

  • [62] Menter F., Kuntz M. and Langtry R. B., “Ten Years of Industrial Experience with the SST Turbulence Model,” Turbulence, Heat and Mass Transfer, Vol. 4, No. 1, 2003, pp. 625–632. https://doi.org/10.4028/www.scientific.net/AMR.576.60 Google Scholar

  • [63] Jeong J. and Hussain F., “On the Identification of a Vortex,” Journal of Fluid Mechanics, Vol. 332, No. 1, 1995, pp. 339–363. https://doi.org/10.1017/S0022112095000462 Google Scholar