Skip to main content
Skip to article control options
No AccessRegular Articles

Modal Analysis of Cylinder-Induced Transitional Shock-Wave/Boundary-Layer Interaction Unsteadiness

Published Online:https://doi.org/10.2514/1.J060880

Shock-wave/boundary-layer interactions (SWBLIs) are critical phenomena in the design of high-speed vehicles as they exhibit inherent unsteadiness that can damage airframes and lead to engine unstart. This paper presents a novel characterization of the unsteady dynamics of cylinder-induced SWBLIs at Reynolds numbers of 26×106  m1 and 13×106  m1 using proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD). Data sets analyzed in this paper were obtained from experiments conducted in the NASA Langley Research Center’s 20-Inch Mach 6 blowdown wind tunnel. The experiments used a cylinder protuberance model mounted on a 10° half-angle wedge to create the interaction. The lower-Reynolds-number case was observed to have a transitional incoming boundary layer, whereas a swept ramp array trip was used in the higher-Reynolds-number case to generate a turbulent incoming boundary layer. The POD analysis from both cases helped isolate spatial regions in the separation bubble that contained the highest percentage of energy for each case, which correlate to the dominant structures in the flow. A power spectral density analysis on the POD temporal components of the highest-energy POD mode (mode 1) revealed a frequency spectrum with a distinct peak at St0.05 in the lower-Reynolds-number case and a band of high-energy peaks in the St range of 0.05–0.2 for the tripped SWBLI case. Through the DMD analysis, an unsteadiness mode was isolated at St=0.057 and an asymmetric motion of the forward lambda shock was identified in the lower-Reynolds-number case. This dynamic asymmetry was not detected in the higher-Reynolds-number case, suggesting that the asymmetric effect may be unique to interactions in transitional incoming boundary layers. Additional spectral-kernel-based POD analysis identified primary unsteadiness frequencies that were in agreement with the DMD findings. A low-frequency mode at St=0.055, exhibiting relatively high energy, was obtained for the lower-Reynolds-number (transitional) case, whereas a broadband “bump” with increased energy over a frequency range of St0.050.2 was observed for the higher-Reynolds-number (tripped) case. Through these analysis techniques, a mode, likely connected to a shock-breathing mechanism, was identified at St0.05. In the assessment of the structural motion occurring in the shock-breathing mode, the phenomenon in the lower-Reynolds-number case was found to traverse a longer upstream distance and compress to a larger degree when compared with the breathing behavior in the higher-Reynolds-number case.

References

  • [1] Holden M., “A Review of Aerothermal Problems Associated with Hypersonic Flight,” 24th Aerospace Sciences Meeting, AIAA Paper 1986-0267, Jan. 1986. https://doi.org/10.2514/6.1986-267 Google Scholar

  • [2] Babinsky H. and Harvey J. K., Shock Wave–Boundary-Layer Interactions, Cambridge Univ. Press, Cambridge, New York, 2011, p. 1. Google Scholar

  • [3] Dolling D., Clemens N. and Hood E., “Exploratory Experimental Study of Transitional Shock Wave Boundary Layer Interactions,” Texas Univ at Austin Dept of Aerospace Engineering and Engineering Mechanics, Accession No. ADA411523, Austin, TX, 2003. Google Scholar

  • [4] Jenkins D. R., Hypersonics Before the Shuttle: A Concise History of the X-15 Research Airplane, NASA Office of Policy and Plans, 2000, p. 54, Chap. 3. Google Scholar

  • [5] Dolling D. S., “Fifty Years of Shock-Wave/Boundary-Layer Interaction Research: What Next?AIAA Journal, Vol. 39, No. 8, 2001, pp. 1517–1531. https://doi.org/10.2514/2.1476 LinkGoogle Scholar

  • [6] Knight D. D. and Degrez G., “Shock Wave Boundary Layer Interactions in High Mach Number Flows a Critical Survey of Current Numerical Prediction Capabilities,” AGARD Advisory Report Agard Ar., Tech. Rept. AR-319, Vol. 2, 1998. Google Scholar

  • [7] Lindörfer S. A., Combs C. S., Kreth P. A. and Schmisseur J. D., “Numerical Simulations of a Cylinder-Induced Shock Wave/Boundary Layer Interaction,” 55th AIAA Aerospace Sciences Meeting, AIAA Paper 2017-0534, Jan. 2017. https://doi.org/10.2514/6.2017-0534 Google Scholar

  • [8] Tester B., Coder J. G., Combs C. S. and Schmisseur J. D., “Simulation of Transitional Shockwave/Boundary-Layer Interaction Using Advanced RANS-Based Modeling,” 47th AIAA Fluid Dynamics Conference, AIAA Paper 2017-4315, June 2017. https://doi.org/10.2514/6.2017-4315 Google Scholar

  • [9] Settles G. S. and Dodson L. J., “Hypersonic Shock/Boundary-Layer Interaction Database: New and Corrected Data,” Pennsylvania State Univ., NASA CR 177638, 1994. https://doi.org/10.2514/6.1991-1763 LinkGoogle Scholar

  • [10] Roy C. J. and Blottner F. G., “Review and Assessment of Turbulence Models for Hypersonic Flows,” Progress in Aerospace Sciences, Vol. 42, Nos. 7–8, 2006, pp. 469–530. https://doi.org/10.1016/j.paerosci.2006.12.002 CrossrefGoogle Scholar

  • [11] Korkegi R. H., “Effect of Transition on Three-Dimensional Shock-Wave/Boundary-Layer Interaction,” AIAA Journal, Vol. 10, No. 3, 1972, pp. 361–363. https://doi.org/10.2514/3.50097 LinkGoogle Scholar

  • [12] Murphree Z., Yuceil K., Clemens N. and Dolling D., “Experimental Studies of Transitional Boundary Layer Shock Wave Interactions,” 45th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 2006-1139, Jan. 2006. https://doi.org/10.2514/6.2007-1139 Google Scholar

  • [13] Giepman R. H. M., Schrijer F. F. J. and Van Oudheusden B. W., “High-Resolution PIV Measurements of a Transitional Shock Wave–Boundary Layer Interaction,” Experiments in Fluids, Vol. 56, No. 6, 2015, pp. 1–20. https://doi.org/10.1007/s00348-015-1977-8 CrossrefGoogle Scholar

  • [14] Murphree Z. R., Combs C. S., Wesley M. Y., Dolling D. S. and Clemens N. T., “Physics of Unsteady Cylinder-Induced Shock-Wave/Transitional Boundary-Layer Interactions,” Journal of Fluid Mechanics, Vol. 918, May 2021, pp. A39-19–A39-23. https://doi.org/10.1017/jfm.2021.369 Google Scholar

  • [15] Combs C. S., Kreth P. A., Schmisseur J. D. and Lash E. L., “Image-Based Analysis of Shock-Wave/Boundary-Layer Interaction Unsteadiness,” AIAA Journal, Vol. 56, No. 3, 2018, pp. 1288–1293. https://doi.org/10.2514/1.J056390 LinkGoogle Scholar

  • [16] Combs C. S., Lash E. L., Kreth P. A. and Schmisseur J. D., “Investigating Unsteady Dynamics of Cylinder-Induced Shock-Wave/Transitional Boundary-Layer Interactions,” AIAA Journal, Vol. 56, No. 4, 2018, pp. 1588–1599. https://doi.org/10.2514/1.J056553 LinkGoogle Scholar

  • [17] Ganapathisubramani B., Clemens N. and Dolling D., “Effects of Upstream Boundary Layer on the Unsteadiness of Shock-Induced Separation,” Journal of Fluid Mechanics, Vol. 585, Aug. 2007, pp. 369–394. https://doi.org/10.1017/S0022112007006799 CrossrefGoogle Scholar

  • [18] Piponniau S., Dussauge J.-P., Debieve J.-F. and Dupont P., “A Simple Model for Low-Frequency Unsteadiness in Shock-Induced Separation,” Journal of Fluid Mechanics, Vol. 629, June 2009, pp. 87–108. CrossrefGoogle Scholar

  • [19] Vanstone L., Seckin S. and Clemens N. T., “POD Analysis of Unsteadiness Mechanisms Within a Swept Compression-Ramp Shock-Wave Boundary-Layer Interaction at Mach 2,” 2018 AIAA Aerospace Sciences Meeting, AIAA Paper 2018-2073, Jan. 2018. https://doi.org/10.2514/6.2018-2073 Google Scholar

  • [20] Combs C. S., Schmisseur J. D., Bathel B. F. and Jones S. B., “Unsteady Analysis of Shock-Wave/Boundary-Layer Interaction Experiments at Mach 4.2,” AIAA Journal, Vol. 57, No. 11, 2019, pp. 4715–4724. https://doi.org/10.2514/1.J058073 LinkGoogle Scholar

  • [21] Venkatachari B. S. and Chang C.-L., “Investigation of Transitional Shock-Wave/Boundary Layer Interactions Using Direct Numerical Simulations,” AIAA Scitech 2019 Forum, AIAA Paper 2019-0093, Jan. 2019. https://doi.org/10.2514/6.2019-0093 Google Scholar

  • [22] Micol J. R., “Langley Aerothermodynamic Facilities Complex: Enhancements and Testing Capabilities,” 36th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper 1998-0147, Jan. 1998. https://doi.org/10.2514/6.1998-147 Google Scholar

  • [23] Berger K. T., Hollingsworth K. E., Wright S. A. and Rufer S. J., “NASA Langley Aerothermodynamics Laboratory: Hypersonic Testing Capabilities,” 53rd AIAA Aerospace Sciences Meeting, AIAA Paper 2015-1337, Jan. 2015. https://doi.org/10.2514/6.2015-1337 Google Scholar

  • [24] Danehy P., Ivey C., Inman J., Bathel B., Jones S., Jiang N., Webster M., Lempert W., Miller J. and Meyer T., “High-Speed PLIF Imaging of Hypersonic Transition over Discrete Cylindrical Roughness,” 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, AIAA Paper 2010-703, Jan. 2010. https://doi.org/10.2514/6.2010-703 Google Scholar

  • [25] Dolling D. and Bogdonoff S., “Blunt Fin-Induced Shock Wave/Turbulent Boundary-Layer Interaction,” AIAA Journal, Vol. 20, No. 12, 1982, pp. 1674–1680. https://doi.org/10.2514/3.8003 LinkGoogle Scholar

  • [26] Combs C. S., Schmisseur J. D., Bathel B. F. and Jones S. B., “Analysis of Shock-Wave/Boundary-Layer Interaction Experiments at Mach 1.8 and Mach 4.2,” AIAA Scitech 2019 Forum, AIAA Paper 2019-0344, Jan. 2019. https://doi.org/10.2514/6.2019-0344 Google Scholar

  • [27] Berry S. A., Auslender A. H., Dilley A. D. and Calleja J. F., “Hypersonic Boundary-Layer Trip Development for Hyper-X,” Journal of Spacecraft and Rockets, Vol. 38, No. 6, 2001, pp. 853–864. https://doi.org/10.2514/2.3775 LinkGoogle Scholar

  • [28] Weiss J., “A Tutorial on the Proper Orthogonal Decomposition,” AIAA Aviation 2019 Forum, AIAA Paper 2019-3333, June 2019. https://doi.org/10.2514/6.2019-3333 Google Scholar

  • [29] Lumley J. L., “The Structure of Inhomogeneous Turbulent Flows,” Atmospheric Turbulence and Radio Wave Propagation, edited by Yaglom A. M. and Tatarski V. I., Doklady Akademii Nauk SSSR, Nauka, Moscow, 1967, pp. 166–176. Google Scholar

  • [30] Lumley J. L., “Coherent Structures in Turbulence,” Transition and Turbulence, Elsevier, Amsterdam, The Netherlands, 1981, pp. 215–242. CrossrefGoogle Scholar

  • [31] Sirovich L., “Turbulence and the Dynamics of Coherent Structures Part I: Coherent Structures,” Quarterly of Applied Mathematics, Vol. 45, No. 3, 1987, pp. 561–571. CrossrefGoogle Scholar

  • [32] Rowley C. W., Colonius T. and Murray R. M., “Model Reduction for Compressible Flows Using POD and Galerkin Projection,” Physica D: Nonlinear Phenomena, Vol. 189, Nos. 1–2, 2004, pp. 115–129. https://doi.org/10.1016/j.physd.2003.03.001 CrossrefGoogle Scholar

  • [33] Taira K., Brunton S. L., Dawson S. T., Rowley C. W., Colonius T., McKeon B. J., Schmidt O. T., Gordeyev S., Theofilis V. and Ukeiley L. S., “Modal Analysis of Fluid Flows: An Overview,” AIAA Journal, Vol. 55, No. 12, 2017, pp. 4013–4041. LinkGoogle Scholar

  • [34] Schmid P. J., “Dynamic Mode Decomposition of Numerical and Experimental Data,” Journal of Fluid Mechanics, Vol. 656, 2010, pp. 5–28. https://doi.org/10.1017/S0022112010001217 CrossrefGoogle Scholar

  • [35] Kutz J. N., Brunton S. L., Brunton B. W. and Proctor J. L., Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems, SIAM, Philadelphia, PA, 2016, pp. 1–29, Chap. 1. Google Scholar

  • [36] Schmidt O. T. and Colonius T., “Guide to Spectral Proper Orthogonal Decomposition,” AIAA Journal, Vol. 58, No. 3, 2020, pp. 1023–1033. https://doi.org/10.2514/1.J058809 LinkGoogle Scholar

  • [37] Towne A., Schmidt O. T. and Colonius T., “Spectral Proper Orthogonal Decomposition and Its Relationship to Dynamic Mode Decomposition and Resolvent Analysis,” Journal of Fluid Mechanics, Vol. 847, May 2018, pp. 821–867. https://doi.org/10.1017/jfm.2018.283 CrossrefGoogle Scholar

  • [38] Glauser M. N., Leib S. J. and George W. K., “Coherent Structures in the Axisymmetric Turbulent Jet Mixing Layer,” Turbulent Shear Flows 5, Springer, New York, 1987, pp. 134–145. CrossrefGoogle Scholar

  • [39] Sinha A., Rodríguez D., Brès G. A. and Colonius T., “Wavepacket Models for Supersonic Jet Noise,” Journal of Fluid Mechanics, Vol. 742, Feb. 2014, pp. 71–95. https://doi.org/10.1017/jfm.2013.660 CrossrefGoogle Scholar

  • [40] Rowley C. W., Mezić I., Bagheri S., Schlatter P. and Henningson D. S., “Spectral Analysis of Nonlinear Flows,” Journal of Fluid Mechanics, Vol. 641, 2009, pp. 115–127. https://doi.org/10.1017/S0022112009992059 CrossrefGoogle Scholar

  • [41] Nichols J. W., Larsson J., Bernardini M. and Pirozzoli S., “Stability and Modal Analysis of Shock/Boundary Layer Interactions,” Theoretical and Computational Fluid Dynamics, Vol. 31, No. 1, June 2016, pp. 33–50. https://doi.org/10.1007/s00162-016-0397-6 CrossrefGoogle Scholar

  • [42] Adler M. C. and Gaitonde D. V., “Dynamic Linear Response of a Shock/Turbulent-Boundary-Layer Interaction Using Constrained Perturbations,” Journal of Fluid Mechanics, Vol. 840, Feb. 2018, pp. 291–341. https://doi.org/10.1017/jfm.2018.70 CrossrefGoogle Scholar

  • [43] Combs C. S., Lash E. L. and Schmisseur J. D., “Investigation of a Cylinder-Induced Transitional Shock Wave-Boundary Layer Interaction Using Laser Diagnostics,” 32nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference, AIAA Paper 2016-4321, June 2016. https://doi.org/10.2514/6.2016-4321 Google Scholar

  • [44] Kerschen G., Golinval J.-C., Vakakis A. F. and Bergman L. A., “The Method of Proper Orthogonal Decomposition for Dynamical Characterization and Order Reduction of Mechanical Systems: An Overview,” Nonlinear Dynamics, Vol. 41, No. 1, 2005, pp. 147–169. https://doi.org/10.1007/s11071-005-2803-2 CrossrefGoogle Scholar

  • [45] Dunne R. and McKeon B. J., “Dynamic Separation on a Pitching and Surging Airfoil as a Model for Flow over Vertical Axis Wind Turbine Blades,” 32nd AIAA Applied Aerodynamics Conference, AIAA Paper 2014-3142, 2014. https://doi.org/10.2514/6.2014-3142 Google Scholar

  • [46] Erengil M. E. and Dolling D. S., “Unsteady Wave Structure near Separation in a Mach 5 Compression Ramp Interaction,” AIAA Journal, Vol. 29, No. 5, 1991, pp. 728–735. https://doi.org/10.2514/3.10647 LinkGoogle Scholar

  • [47] Dolling D. and Brusniak L., “Correlation of Separation Shock Motion in a Cylinder-Induced, Mach 5, Turbulent Interaction with Pressure Fluctuations in the Separated Flow,” 29th Aerospace Sciences Meeting, AIAA Paper 1991-650, Jan. 1991. https://doi.org/10.2514/6.1991-650 Google Scholar

  • [48] Mustafa M., Parziale N., Smith M. and Marineau E., “Amplification and Structure of Streamwise-Velocity Fluctuations in Compression-Corner Shock-Wave/Turbulent Boundary-Layer Interactions,” Journal of Fluid Mechanics, Vol. 863, Jan. 2019, pp. 1091–1122. https://doi.org/10.1017/jfm.2018.1029 CrossrefGoogle Scholar

  • [49] Lash E. L., Gragston M., McDaniel Z., Kreth P. A. and Schmisseur J. D., “Exploration of Upstream Influence and the Role of Shock Generator Geometry in Shock Wave/Transitional Boundary Layer Interactions at Mach 1.8 Edge Conditions,” AIAA Aviation 2020 Forum, AIAA Paper 2020-2999, June 2020. https://doi.org/10.2514/6.2020-2999 Google Scholar

  • [50] Cottier S., Combs C. S. and Vanstone L., “Spectral Proper Orthogonal Decomposition Analysis of Shock-Wave/Boundary-Layer Interactions,” AIAA Aviation 2019 Forum, AIAA Paper 2019-3331, June 2019. https://doi.org/10.2514/6.2019-3331 Google Scholar

  • [51] Clemens N. and Narayanaswamy V., “Shock/Turbulent Boundary Layer Interactions: Review of Recent Work on Sources of Unsteadiness,” 39th AIAA Fluid Dynamics Conference, AIAA Paper 2009-3710, June 2009. https://doi.org/10.2514/6.2009-3710 Google Scholar

  • [52] Dupont P., Haddad C., Ardissone J. and Debieve J., “Space and Time Organisation of a Shock Wave/Turbulent Boundary Layer Interaction,” Aerospace Science and Technology, Vol. 9, No. 7, 2005, pp. 561–572. https://doi.org/10.1016/j.ast.2004.12.009 CrossrefGoogle Scholar

  • [53] Dussauge J.-P., Dupont P. and Debiève J.-F., “Unsteadiness in Shock Wave Boundary Layer Interactions with Separation,” Aerospace Science and Technology, Vol. 10, No. 2, 2006, pp. 85–91. https://doi.org/10.1016/j.ast.2005.09.006 CrossrefGoogle Scholar

  • [54] Murphree Z. R., Physics of Unsteady Cylinder-Induced Transitional Shock Wave Boundary Layer Interactions, Univ. of Texas, Austin, TX, 2009, pp. 81–110, Chap. 5. Google Scholar

  • [55] Leidy A., Neel I. T., Tichenor N. R., Bowersox R. D. and Schmisseur J. D., “Some Effects of Tunnel Noise on Cylinder-Induced Mach 6 Transitional Shock Wave Boundary Layer Interactions,” AIAA Scitech 2020 Forum, AIAA Paper 2020-0582, Jan. 2020. https://doi.org/10.2514/6.2020-0582 Google Scholar

  • [56] Brunton S. L., Proctor J. L. and Kutz J. N., “Sparse Identification of Nonlinear Dynamics with Control (SINDYc),” IFAC-PapersOnLine, Vol. 49, No. 18, 2016, pp. 710–715. https://doi.org/10.1016/j.ifacol.2016.10.249 CrossrefGoogle Scholar