Skip to main content
Skip to article control options
No AccessRegular Articles

Identifying the Propeller Transition to Wing-Like Behavior at High Angles of Incidence

Published Online:

The aerodynamic performance of a propeller at high incidence angles, in forward flight, has long been associated with wing-like behaviors. At low to intermediate angles, thrust generally decreases with airspeed, as with the axial propeller, whereas an opposite trend is observed at high angles, resembling wings. However, an explicit determination of the transition from propeller to wing-like behaviors is lacking. Such transition characteristics are investigated, under the scope of the axial and wing-equivalent components of the propeller’s thrust, which have been demonstrated to comprise total thrust, in a previous paper. For this, wind tunnel experiments are conducted at incidence angles up to 90° on four small-scale fixed-pitch propellers, with blade angles up to 23°. At the angle of thrust behavioral inversion AOAinv, opposite sensitivities to advance ratio J are observed for each thrust component, annulling the sensitivity of the thrust coefficient. At angles higher than AOAinv, as J grows, the wing component positive sensitivity is dominant, and the wing component itself largely exceeds the axial term, causing the propeller to behave like a wing. Consequently, AOAinv is defined as the propeller’s transition angle from axial-dominant to wing-like behavior. The tests showed AOAinv occurring at lower angles for higher pitch propellers.


  • [1] Rankine W. M. J., “On the Mechanical Principles of the Action of Propellers,” Transactions of the Institute of Naval Architects, Vol. 6, April 1865, pp. 13–39. Google Scholar

  • [2] Froude R. E., “On the Part Played in Propulsion by Differences of Fluid Pressure,” Transactions of the Institute of Naval Architects, Vol. 30, 1889, pp. 390–405. Google Scholar

  • [3] Betz A., “Eine Erweiterung der Schraubenstrahl Theorie,” Zeitschrift für Flugtechnik und Mot. 11, Vol. 11, 1920, pp. 105–110. Google Scholar

  • [4] Glauert H., “Airplane Propellers,” Aerodynamic Theory, Vol. IV, edited by Durand W. F., Julius Springer, Berlin, 1935, pp. 169–359. CrossrefGoogle Scholar

  • [5] Goorjian P. M., “An Invalid Equation in the General Momentum Theory of Actuator Disk,” AIAA Journal, Vol. 10, No. 4, 1972, pp. 543–544. LinkGoogle Scholar

  • [6] Sørensen J. N., General Momentum Theory for Horizontal Axis Wind Turbines, Vol. 4, Springer International Publishing, Cham, Switzerland, 2016, pp. 185, 319. CrossrefGoogle Scholar

  • [7] Bontempo R. and Manna M., “Effects of the Approximations Embodied in the Momentum Theory as Applied to the NREL PHASE VI Wind Turbine,” International Journal of Turbomachinery, Propulsion and Power, Vol. 2, No. 2, 2017, Paper 9. Google Scholar

  • [8] Bontempo R. and Manna M., “Verification of the Axial Momentum Theory for Propellers with a Uniform Load Distribution,” International Journal of Turbomachinery, Propulsion and Power, Vol. 4, No. 2, 2019, Paper 8. Google Scholar

  • [9] Sørensen J. and Mikkelsen R., “On the Validity of the Blade Element Momentum Method,” European Wind Energy Conference and Exhibition (EWEC-01), edited by Helm P. and Zervos A., WIP-Renewable Energies, Munich, 2001, pp. 362–366. Google Scholar

  • [10] Van Kuik G. A. M. and Lignarolo L. E. M., “Potential Flow Solutions for Energy Extracting Actuator Disc Flows,” Wind Energy, Vol. 19, No. 8, 2016, pp. 1391–1406. Google Scholar

  • [11] Bontempo R. and Manna M., “Analysis and Evaluation of the Momentum Theory Errors as Applied to Propellers,” AIAA Journal, Vol. 54, No. 12, 2016, pp. 3840–3848. LinkGoogle Scholar

  • [12] Lanchester F. W., “A Contribution to the Theory of Propulsion and the Screw Propeller,” Journal of the American Society for Naval Engineers, Vol. 27, No. 2, 1915, pp. 509–510. Google Scholar

  • [13] Schmidt G. and Sparenberg J., “On the Edge Singularity of an Actuator Disk with Large Constant Normal Load,” Journal of Ship Research, Vol. 21, No. 2, 1977, pp. 125–131. Google Scholar

  • [14] Van Kuik G. A. M., “On the Revision of the Actuator Disc Momentum Theory,” Wind Engineering, Vol. 5, Jan. 1991, pp. 276–289. Google Scholar

  • [15] Van Kuik G. A. M., “The Edge Singularity of an Actuator Disc with a Constant Normal Load,” Proceedings of ASME Wind Energy Symposium, ASME Paper WIND2003-356, New York, Jan. 2003, pp. 62–72. Google Scholar

  • [16] Van Holten T., “Concentrator Systems for Wind Energy, with Emphasis on Tipvanes,” Wind Engineering, Vol. 5, No. 1, 1981, pp. 29–45. Google Scholar

  • [17] Spalart P. R., “On the Simple Actuator Disk,” Journal of Fluid Mechanics, Vol. 494, Nov. 2003, pp. 399–405. CrossrefGoogle Scholar

  • [18] Conway J. T., “Analytical Solutions for the Actuator Disk with Variable Radial Distribution of Load,” Journal of Fluid Mechanics, Vol. 297, Aug. 1995, pp. 327–355. CrossrefGoogle Scholar

  • [19] Conway J. T., “Exact Actuator Disk Solutions for Non-Uniform Heavy Loading and Slipstream Contraction,” Journal of Fluid Mechanics, Vol. 365, June 1998, pp. 235–267. CrossrefGoogle Scholar

  • [20] Rosen A. and Gur O., “Novel Approach to Axisymmetric Actuator Disk Modeling,” AIAA Journal, Vol. 46, No. 11, 2008, pp. 2914–2925. LinkGoogle Scholar

  • [21] Kominer S. and Rosen A., “New Actuator-Disk Model for a Skewed Flow,” AIAA Journal, Vol. 51, No. 6, 2013, pp. 1382–1393. LinkGoogle Scholar

  • [22] Van Kuik G. A., Sørensen J. N. and Okulov V. L., “Rotor Theories by Professor Joukowsky: Momentum Theories,” Progress in Aerospace Sciences, Vol. 73, Feb. 2015, pp. 1–18. CrossrefGoogle Scholar

  • [23] Glauert H., “A General Theory of the Autogyro,” HM Stationery Office TR 1111, 1926, p. 563. Google Scholar

  • [24] Johnson W., Helicopter Theory, Princeton Univ. Press, Princeton, NJ, 1980, p. 127. Google Scholar

  • [25] Shapiro J., Principles of Helicopter Engineering, McGraw–Hill, New York, 1956, p. 17. Google Scholar

  • [26] McCormick B. W., Aerodynamics of V/STOL Flight, Academic Press, New York, 1967, p. 125. Google Scholar

  • [27] Rubin R. L. and Zhao D., “New Development of Classical Actuator Disk Model for Propellers at Incidence,” AIAA Journal, Vol. 59, No. 3, 2021, pp. 1040–1054. LinkGoogle Scholar

  • [28] Rubin R. L., “Theoretical and Experimental Aerodynamic Thrust Studies of Propellers at Angles of Incidence,” Ph.D. Dissertation, Univ. of Canterbury, Christchurch, New Zealand, 2021, Google Scholar

  • [29] Dommasch D. O., Elements of Propeller and Helicopter Aerodynamics, Isaac Pitman & Sons, London, 1953, pp. 71, 123. Google Scholar

  • [30] Micallef D., van Bussel G., Ferreira C. S. and Sant T., “An Investigation of Radial Velocities for a Horizontal Axis Wind Turbine in Axial and Yawed Flows,” Wind Energy, Vol. 16, No. 4, 2013, pp. 529–544. CrossrefGoogle Scholar

  • [31] Ariza D. G., “Study of the Sensitivity to the Lateral Wind of a Mini Unmanned Aerial Vehicle with VTOL Flight Capabilities,” Ph.D. Dissertation, Inst. Supérieur l’Aéronautique et de L’espace, Toulouse, France, 2013, p. 124. Google Scholar

  • [32] Bramwell A., “Some Remarks on the Induced Velocity Field of a Lifting Rotor and on Glauert’s Formula,” H.M. Stationary Office, Aeronautical Research Council Current Papers—C.P. No.  1301, London, 1974, pp. 1–50. Google Scholar

  • [33] McLemore H. C. and Cannon M. D., “Aerodynamic Investigation of a Four-Blade Propeller Operating Through an Angle-of-Attack Range From 0° to180°,” NACA TN-3228, 1954. Google Scholar

  • [34] Yaggy P. F. and Rogallo V. L., “A Wind-Tunnel Investigation of Three Propellers Through an Angle-of-Attack Range from 0° to 85°,” NACA TN D 318, 1960, Google Scholar

  • [35] Pitt D. M. and Peters D. A., “Theoretical Prediction of Dynamic-Inflow Derivatives,” Vertica, Vol. 5, No. 1, 1981, pp. 21–34. Google Scholar

  • [36] Morillo J. A. and Peters D. A., “Velocity Field Above a Rotor Disk by a New Dynamic Inflow Model,” Journal of Aircraft, Vol. 39, No. 5, 2002, pp. 731–738. LinkGoogle Scholar

  • [37] Bramesfeld G. and Maughmer M. D., “Relaxed-Wake Vortex-Lattice Method Using Distributed Vorticity Elements,” Journal of Aircraft, Vol. 45, No. 2, 2008, pp. 560–568. LinkGoogle Scholar

  • [38] Deters R. W., Ananda G. K. and Selig M. S., “Slipstream Measurements of Small-Scale Propellers at Low Reynolds Numbers,” 33rd AIAA Applied Aerodynamics Conference, AIAA Paper 2015-2265, 2015. Google Scholar

  • [39] Theys B., Dimitriadis G., Hendrick P. and De Schutter J., “Experimental and Numerical Study of Micro-Aerial-Vehicle Propeller Performance in Oblique Flow,” Journal of Aircraft, Vol. 54, No. 3, 2017, pp. 1076–1084. LinkGoogle Scholar

  • [40] Kolaei A., Barcelos D. and Bramesfeld G., “Experimental Analysis of a Small-Scale Rotor at Various Inflow Angles,” International Journal of Aerospace Engineering, Vol. 2018, 2018, Article ID 2560370. CrossrefGoogle Scholar

  • [41] Serrano D., Ren M., Qureshi A. J. and Ghaemi S., “Effect of Disk Angle-of-Attack on Aerodynamic Performance of Small Propellers,” Aerospace Science and Technology, Vol. 92, Sept. 2019, pp. 901–914. CrossrefGoogle Scholar

  • [42] Cerny M. and Breitsamter C., “Investigation of Small-Scale Propellers Under Non-Axial Inflow Conditions,” Aerospace Science and Technology, Vol. 106, No. 4, Nov. 2020, Paper 106048. Google Scholar

  • [43] Zarev A. and Green R., “Experimental Investigation of the Effect of Yaw Angle on the Inflow of a Two-Bladed Propeller,” Aerospace Science and Technology, Vol. 103, Aug. 2020, Paper 105940. Google Scholar

  • [44] Higgins R. J., Zarev A., Barakos G. N. and Green R. B., “Numerical Investigation of a Two-Bladed Propeller Inflow at Yaw,” Journal of Aircraft, Vol. 57, No. 2, 2020, pp. 292–304. LinkGoogle Scholar

  • [45] Stokkermans T. C. and Veldhuis L. L., “Propeller Performance at Large Angle of Attack Applicable to Compound Helicopters,” AIAA Journal, Vol. 59, No. 6, 2021, pp. 2183–2199. LinkGoogle Scholar

  • [46] Stokkermans T. C., Usai D., Sinnige T. and Veldhuis L. L., “Aerodynamic Interaction Effects Between Propellers in Typical eVTOL Vehicle Configurations,” Journal of Aircraft, Vol. 58, No. 4, 2021, pp. 1–19. Google Scholar

  • [47] McCormick B., Aerodynamics, Aeronautics & Flight Mechanics, Wiley, New York, 1979, p. 356. Google Scholar

  • [48] Stevenson D., “The University of Canterbury Wind Tunnel,” New Zealand Engineering, Vol. 23, No. 10, 1968, pp. 403–407. Google Scholar

  • [49] Glauert H., The Elements of Airfoil & Airscrew Theory, 2nd ed., Cambridge Univ. Press, Cambridge, England, U.K., 1948, p. 356. Google Scholar

  • [50] Rae W. H. and Pope A., Low-Speed Wind Tunnel Testing, Wiley, New York, 1984, p. 434. Google Scholar

  • [51] Glauert H., “The Interference on the Characteristics of an Aerofoil in a Wind Tunnel of Rectangular Section,” HM Stationery Office TR 1459, Feb. 1932. Google Scholar

  • [52] Heyson H. H., Linearized Theory of Wind-Tunnel Jet-Boundary Corrections and Ground Effect for vtol-stol Aircraft, U.S. Government Printing Office, Washington, D.C., 1962. Google Scholar

  • [53] Heyson H. H. and Grunwald K. J., “Wind-Tunnel Boundary Interference for V/STOL Testing,” Conference on V/STOL and STOL Aircraft, Ames Research Center, Moffett Field, CA, NASA SP-116, Vol. 116, April 1966, p. 409. Google Scholar

  • [54] Langer H.-J., Peterson R. and Maier T. H., “An Experimental Evaluation of Wind Tunnel Wall Correction Methods for Helicopter Performance,” Proceedings of the AHS 52nd Annual Forum, Army/NASA Rotorcraft Division, Army Aviation and Missile Command, Aeroflightdynamics Directorate (AMRDEC), Ames Research Center, Moffett Field, CA, 1996, pp. 1451–1474. Google Scholar

  • [55] Rae W. H., “Limits on Minimum Speed V/STOL Wind-Tunnel Tests,” Journal of Aircraft, Vol. 4, No. 3, 1967, pp. 249–254. LinkGoogle Scholar

  • [56] Coleman H. W. and Steele W. G., Experimentation, Validation, and Uncertainty Analysis for Engineers, Wiley, New York, 2018. CrossrefGoogle Scholar