Skip to main content
Skip to article control options
No AccessRegular Articles

Logspace Sequential Quadratic Programming for Design Optimization

Published Online:https://doi.org/10.2514/1.J060950

A novel approach to exploiting the log-convex structure present in many design problems is developed by modifying the classical Sequential Quadratic Programming (SQP) algorithm. The modified algorithm, Logspace Sequential Quadratic Programming (LSQP), inherits some of the computational efficiency exhibited by log-convex methods such as Geometric Programing and Signomial Programing, but retains the natural integration of black-box analysis methods from SQP. As a result, significant computational savings is achieved without the need to invasively modify existing black-box analysis methods prevalent in practical design problems. In the cases considered here, the LSQP algorithm shows a 40–70% reduction in number of iterations compared to SQP.

References

  • [1] Boyd S., Kim S.-J., Vandenberghe L. and Hassibi A., “A Tutorial on Geometric Programming,” Optimization and Engineering, Vol. 8, No. 1, 2007, pp. 67–127. https://doi.org/10.1007/s11081-007-9001-7 CrossrefGoogle Scholar

  • [2] Clasen R. J., “The Solution of the Chemical Equilibrium Programming Problem with Generalized Benders Decomposition,” Operations Research, Vol. 32, No. 1, 1984, pp. 70–79. https://doi.org/10.1287/opre.32.1.70 Google Scholar

  • [3] Greenberg H. J., “Mathematical Programming Models for Environmental Quality Control,” Operations Research, Vol. 43, No. 4, 1995, pp. 578–622. https://doi.org/10.1287/opre.43.4.578 Google Scholar

  • [4] Boyd S. P., Kim S.-J., Patil D. D. and Horowitz M. A., “Digital Circuit Optimization via Geometric Programming,” Operations Research, Vol. 53, No. 6, 2005, pp. 899–932. https://doi.org/10.1287/opre.1050.0254 CrossrefGoogle Scholar

  • [5] del Mar Hershenson M., Boyd S. P. and Lee T. H., “Optimal Design of a CMOS op-amp via Geometric Programming,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 20, No. 1, 2001, pp. 1–21. https://doi.org/10.1109/43.905671 Google Scholar

  • [6] Li X., Gopalakrishnan P., Xu Y. and Pileggi T., “Robust Analog/RF Circuit Design with Projection-Based Posynomial Modeling,” IEEE/ACM International Conference on Computer Aided Design, 2004. ICCAD-2004., Inst. of Electrical and Electronics Engineers, New York, 2004, pp. 855–862. https://doi.org/10.1109/ICCAD.2004.1382694 Google Scholar

  • [7] Xu Y., Pileggi L. T. and Boyd S. P., “ORACLE: Optimization with Recourse of Analog Circuits Including Layout Extraction,” Proceedings of the 41st Annual Design Automation Conference, June 2004, pp. 151–154. https://doi.org/10.1145/996566.996611 Google Scholar

  • [8] Jabr R. A., “Application of Geometric Programming to Transformer Design,” IEEE Transactions on Magnetics, Vol. 41, No. 11, 2005, pp. 4261–4269. https://doi.org/10.1109/TMAG.2005.856921 Google Scholar

  • [9] Chiang M., Geometric Programming for Communication Systems, Now Publishers Inc, Boston, MA, 2005, pp. 115–131. Google Scholar

  • [10] Chiang M., Tan C. W., Palomar D. P., O’Neill D. and Julian D., “Power Control by Geometric Programming,” IEEE Transactions on Wireless Communications, Vol. 6, No. 7, 2007, pp. 2640–2651. https://doi.org/10.1109/TWC.2007.05960 Google Scholar

  • [11] Kandukuri S. and Boyd S., “Optimal Power Control in Interference-Limited Fading Wireless Channels with Outage-Probability Specifications,” IEEE Transactions on Wireless Communications, Vol. 1, No. 1, 2002, pp. 46–55. https://doi.org/10.1109/7693.975444 Google Scholar

  • [12] Marin-Sanguino A., Voit E. O., Gonzalez-Alcon C. and Torres N. V., “Optimization of Biotechnological Systems Through Geometric Programming,” Theoretical Biology and Medical Modelling, Vol. 4, No. 1, 2007, p. 38. https://doi.org/10.1186/1742-4682-4-38 Google Scholar

  • [13] Vera J., González-Alcón C., Marn-Sanguino A. and Torres N., “Optimization of Biochemical Systems Through Mathematical Programming: Methods and Applications,” Computers & Operations Research, Vol. 37, No. 8, 2010, pp. 1427–1438. https://doi.org/10.1016/j.cor.2009.02.021 Google Scholar

  • [14] Preciado V. M., Zargham M., Enyioha C., Jadbabaie A. and Pappas G., “Optimal Resource Allocation for Network Protection: A Geometric Programming Approach,” IEEE Transactions on Control of Network Systems, Vol. 1, No. 1, 2014, pp. 99–108. https://doi.org/10.1109/TCNS.2014.2310911 CrossrefGoogle Scholar

  • [15] Misra S., Fisher M. W., Backhaus S., Bent R., Chertkov M. and Pan F., “Optimal Compression in Natural Gas Networks: A Geometric Programming Approach,” IEEE Transactions on Control of Network Systems, Vol. 2, No. 1, 2014, pp. 47–56. https://doi.org/10.1109/TCNS.2014.2367360 Google Scholar

  • [16] Sela Perelman L. and Amin S., “Control of Tree Water Networks: A Geometric Programming Approach,” Water Resources Research, Vol. 51, No. 10, 2015, pp. 8409–8430.  10.1002/2014 WR016756 Google Scholar

  • [17] Agrawal A., Diamond S. and Boyd S., “Disciplined Geometric Programming,” Optimization Letters, Vol. 13, No. 5, 2019, pp. 961–976. https://doi.org/10.1007/s11590-019-01422-z CrossrefGoogle Scholar

  • [18] Hoburg W. and Abbeel P., “Geometric Programming for Aircraft Design Optimization,” AIAA Journal, Vol. 52, No. 11, 2014, pp. 2414–2426. https://doi.org/10.2514/1.J052732 LinkGoogle Scholar

  • [19] Torenbeek E., Advanced Aircraft Design: Conceptual Design, Analysis and Optimization of Subsonic Civil Airplanes, 2nd ed., Wiley, Chichester, U. K., 2013. CrossrefGoogle Scholar

  • [20] Hoburg W. and Abbeel P., “Fast Wind Turbine Design via Geometric Programming,” 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper 2013-1532, 2013. https://doi.org/10.2514/6.2013-1532 Google Scholar

  • [21] Kirschen P. G., Burnell E. E. and Hoburg W. W., “Signomial Programming Models for Aircraft Design,” 54th AIAA Aerospace Sciences Meeting, AIAA Paper 2016-2003, 2016. https://doi.org/10.2514/6.2016-2003 Google Scholar

  • [22] Brown A. and Harris W., “A Vehicle Design and Optimization Model for On-Demand Aviation,” 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper 2018-0105, 2018. https://doi.org/10.2514/6.2018-0105 Google Scholar

  • [23] York M. A., Öztürk B., Burnell E. and Hoburg W. W., “Efficient Aircraft Multidisciplinary Design Optimization and Sensitivity Analysis via Signomial Programming,” AIAA Journal, Vol. 56, No. 11, 2018, pp. 4546–4561. https://doi.org/10.2514/1.J057020 LinkGoogle Scholar

  • [24] Burton M. and Hoburg W., “Solar and Gas Powered Long-Endurance Unmanned Aircraft Sizing via Geometric Programming,” Journal of Aircraft, Vol. 55, No. 1, 2018, pp. 212–225. https://doi.org/10.2514/1.C034405 LinkGoogle Scholar

  • [25] Lin B., Carpenter M. and de Weck O., “Simultaneous Vehicle and Trajectory Design Using Convex Optimization,” AIAA Scitech 2020 Forum, AIAA Paper 2020-0160, 2020. https://doi.org/10.2514/6.2020-0160 Google Scholar

  • [26] Kirschen P. G., York M. A., Ozturk B. and Hoburg W. W., “Application of Signomial Programming to Aircraft Design,” Journal of Aircraft, Vol. 55, No. 3, 2018, pp. 965–987. https://doi.org/10.2514/1.C034378 LinkGoogle Scholar

  • [27] York M. A., Hoburg W. W. and Drela M., “Turbofan Engine Sizing and Tradeoff Analysis via Signomial Programming,” Journal of Aircraft, Vol. 55, No. 3, 2018, pp. 988–1003. https://doi.org/10.2514/1.C034463 LinkGoogle Scholar

  • [28] Saab A., Burnell E. and Hoburg W. W., “Robust Designs via Geometric Programming,” arXiv, Aug. 2018, https://arxiv.org/abs/1808.07192. Google Scholar

  • [29] Hall D. K., Dowdle A., Gonzalez J., Trollinger L. and Thalheimer W., “Assessment of a Boundary Layer Ingesting Turboelectric Aircraft Configuration Using Signomial Programming,” 2018 Aviation Technology, Integration, and Operations Conference, AIAA Paper 2018-3973, 2018. https://doi.org/10.2514/6.2018-3973 Google Scholar

  • [30] Martins J. R. and Lambe A. B., “Multidisciplinary Design Optimization: A Survey of Architectures,” AIAA Journal, Vol. 51, No. 9, 2013, pp. 2049–2075. https://doi.org/10.2514/1.J051895 LinkGoogle Scholar

  • [31] Wakayama S., “Multidisciplinary Design Optimization of the Blended-Wing-Body,” AIAA Paper 1998-4938, 1998. https://doi.org/10.2514/6.1998-4938 LinkGoogle Scholar

  • [32] Kroo I. and Takai M., “A Quasi-Procedural, Knowledge-Based System for Aircraft Design,” AIAA Paper 1988-6502, 1988. https://doi.org/10.2514/6.1988-4428 Google Scholar

  • [33] Boggs P. T. and Tolle J. W., “Sequential Quadratic Programming,” Acta Numerica, Vol. 4, Jan. 1995, pp. 1–51. https://doi.org/10.1017/S0962492900002518 CrossrefGoogle Scholar

  • [34] Nocedal J. and Wright S., Numerical Optimization, Springer Science & Business Media, New York, 2006, pp. 1–664. Google Scholar

  • [35] Kraft D., “A Software Package for Sequential Quadratic Programming,” Institut für Dynamik der Flugsysteme, Rept. DFVLR-FB 88-28, Oberpfaffenhofen, Germany, 1988. Google Scholar

  • [36] Diamond S. and Boyd S., “CVXPY: A Python-Embedded Modeling Language for Convex Optimization,” Journal of Machine Learning Research, Vol. 17, No. 1, 2016, pp. 2909–2913. Google Scholar

  • [37] Kirschen P. G. and Hoburg W. W., “The Power of Log Transformation: A Comparison of Geometric and Signomial Programming with General Nonlinear Programming Techniques for Aircraft Design Optimization,” 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper 2018-0655, 2018. https://doi.org/10.2514/6.2018-0655 LinkGoogle Scholar

  • [38] Hoburg W., Kirschen P. and Abbeel P., “Data Fitting with Geometric-Programming-Compatible Softmax Functions,” Optimization and Engineering, Vol. 17, No. 4, 2016, pp. 1–22. https://doi.org/10.1007/s11081-016-9332-3 Google Scholar

  • [39] Floudas C. A., Pardalos P. M., Adjiman C., Esposito W. R., Gümüs Z. H., Harding S. T., Klepeis J. L., Meyer C. A. and Schweiger C. A., Handbook of Test Problems in Local and Global Optimization, Vol. 33, Springer Science & Business Media, New York, 2013, pp. 90–92. https://doi.org/10.1007/978-1-4757-3040-1 Google Scholar

  • [40] Reuther A., Kepner J., Byun C., Samsi S., Arcand W., Bestor D., Bergeron B., Gadepally V., Houle M., Hubbell M., Jones M., Klein A., Milechin L., Mullen J., Prout A., Rosa A., Yee C. and Michaleas P., “Interactive Supercomputing on 40,000 Cores for Machine Learning and Data Analysis,” 2018 IEEE High Performance extreme Computing Conference (HPEC), Inst. of Electrical and Electronics Engineers, New York, 2018, pp. 1–6. https://doi.org/10.1109/HPEC.2018.8547629 Google Scholar