Skip to main content
Skip to article control options
No AccessRegular Articles

HTPB Heat of Formation: Literature Survey, Group Additive Estimations, and Theoretical Effects

Published Online:https://doi.org/10.2514/1.J060972

Hydroxyl-terminated polybutadiene (HTPB) is a common ingredient in rocket propellants, but its thermochemical properties (composition, density, and heat of formation) are not well defined. A survey of the literature and thermochemical databases indicated wide ranges for these properties, especially heat of formation. Six group additive schemes were used to estimate the heat of formation of HTPB and analyze the effects of hydroxyl functionalization and curing reactions. Good agreement is observed between the methods for HTPB isomer units, but cumulative differences result in significant disparities for larger, practical polymers. Increased hydroxyl functionality and the curing reaction are predicted to yield nonnegligible decreases in the heat of formation. The heat of formation of propellant-grade, isophorone-diisocayante-cured HTPB R-45M (C213.8H323.0O4.6N2.3) was computed as 342  kJ/mol or 114  kJ/kg. Chemical equilibrium analyses were completed for solid propellants composed of ammonium perchlorate and HTPB, and for hybrid rocket engines based on HTPB burning with liquid oxygen or nitrous oxide, where the heat of formation of HTPB was varied within a reasonable range. The chemical equilibrium analysis computations indicated that combustion gas properties and theoretical propellant performance can vary up to 5% within practical operating conditions for the range of HTPB heats of formation implemented.

References

  • [1] Dey A., Sikder A. K. and Athar J., “Micro-Structural Effect on Hydroxy Terminated Poly Butadiene (HTPB) Prepolymer and HTPB Based Composite Propellant,” Journal of Molecular Nanotechnology and Nanomedicine, Vol. 1, No. 1, 2017, pp. 1–7. Google Scholar

  • [2] Technical Data Sheet: Poly bd® R-45M, Cray Valley USA, 2010. Google Scholar

  • [3] Sutton G. P. and Biblarz O., Rocket Propulsion Elements, 8th ed., Wiley, New York, 2010. Google Scholar

  • [4] Wei Z. and Deyu T., “Calculation of the Energetic Characteristics of TN in Composite Solid Propellants,” Air Force Systems Command AD-A164 310, FTD-ID(RS)T-0961-85, Baltimore, MD, 1986. Google Scholar

  • [5] Schoyer H. F. R., Schnorhk A. J., Korting P. A. O. G., Van Lit P. J., Mul J. M., Gadiot G. M. H. J. L. and Meulenbrugge J. J., “High-Performance Propellants Based on Hydrazinium Nitroformate,” Journal of Propulsion and Power, Vol. 11, No. 4, 1995, pp. 856–869. https://doi.org/10.2514/3.23911 LinkGoogle Scholar

  • [6] Simmons R. L., “Guidelines to Higher Energy Gun Propellants,” 27th International Annual Conference of ICT, Fraunhofer Inst. for Chemical Technology, 1996. Google Scholar

  • [7] Carvalheira P., Campos J. and Gadiot G. M. H. J. L., “Some Rules for the Design of High Solid Loading Compsite Solid Propellants and Explosives,” 27th International Annual Conference of ICT, Fraunhofer Inst. for Chemical Technology, 1996. Google Scholar

  • [8] Jeppson M. B., Beckstead M. W. and Jing Q., “A Kinetic Model for the Premixed Combustion of a Fine AP/HTPB Composite Propellant,” 36th AIAA Aerospace Sciences Meeting, AIAA Paper 1998-0447, 1998. https://doi.org/10.2514/6.1998-447 LinkGoogle Scholar

  • [9] Lengelle G., “Recent Developments and Challenges in the Ignition and Combustion of Solid Propellants,” International Journal of Energetic Materials and Chemical Propulsion, Vol. 4, No. 1, 1997, pp. 515–548. https://doi.org/10.1615/IntJEnergeticMaterialsChemProp.v4.i1-6.510 CrossrefGoogle Scholar

  • [10] Ramakrishna P. A., Paul P. J. and Mukunda H. S., “Sandwich Propellant Combustion: Modeling and Experimental Comparison,” Proceedings of the Combustion Institute, Vol. 29, No. 2, 2002, pp. 2963–2973. https://doi.org/10.1016/S1540-7489(02)80362-5 CrossrefGoogle Scholar

  • [11] Rajesh K. K., Kuznetsov A. and Natan B., “Design of a Lab-Scale Hydrogen Peroxide/Hydroxyl Terminated Polybutadiene Hybrid Rocket Motor,” 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, AIAA Paper 2003-4744, 2003. https://doi.org/10.2514/6.2003-4744 Google Scholar

  • [12] Rajesh K. K., “Thrust Modulation in a Nitrous-Oxide/Hydroxyl-Terminated Polybutadiene Hybrid Rocket Motor,” 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper 2006-4503, 2006. https://doi.org/10.2514/6.2006-4503 LinkGoogle Scholar

  • [13] Zilliac G. and Karabeyoglu M. A., “Hybrid Rocket Fuel Regression Rate Data and Modeling,” 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper 2006-4504, 2006. https://doi.org/10.2514/6.2006-4504 Google Scholar

  • [14] Chiaverini M., “Review of Solid-Fuel Regression Rate Behavior in Classical and Nonclassical Hybrid Rocket Motors,” Fundamentals of Hybrid Rocket Combustion and Propulsion, edited byKuo K. K. and Chiaverini M. J., AIAA, Reston, VA, 2007, Chap. 2. https://doi.org/10.2514/4.866876 Google Scholar

  • [15] Lengelle G., “Solid-Fuel Pyrolysis Phenomena and Regression Rate, Part 1: Mechanisms,” Fundamentals of Hybrid Rocket Combustion and Propulsion, edited by Kuo K. K. and Chiaverini M. J., AIAA, Reston, VA, 2007, Chap. 3. https://doi.org/10.2514/4.866876 Google Scholar

  • [16] Risha G., Evans B. J., Boyer E. and Kuo K. K., “Metals, Energetic Additives, and Special Binders Used in Solid Fuels for Hybrid Rockets,” Fundamentals of Hybrid Rocket Combustion and Propulsion, edited byKuo K. K. and Chiaverini M. J., AIAA, Reston, VA, 2007, Chap. 10. https://doi.org/10.2514/4.866876 Google Scholar

  • [17] Talawar M. B., Sivabalan R., Anniyappan M., Gore G. M., Asthana S. N. and Gandhe B. R., “Emerging Trends in Advanced High Energy Materials,” Combustion, Explosion, and Shock Waves, Vol. 43, No. 1, 2007, pp. 62–72. https://doi.org/10.1007/s10573-007-0010-9 CrossrefGoogle Scholar

  • [18] Eilers S. D. and Whitmore S. A., “Correlation of Hybrid Rocket Propellant Regression Measurements with Enthalpy-Balance Model Predictions,” Journal of Spacecraft and Rockets, Vol. 45, No. 5, 2008, pp. 1010–1020. https://doi.org/10.2514/1.33804 LinkGoogle Scholar

  • [19] Nair U. R., Asthana S. N., Rao A. S. and Gandhe B. R., “Advances in High Energy Materials,” Defence Science Journal, Vol. 60, No. 2, 2010, pp. 137–151. https://doi.org/10.14429/dsj.60.327 CrossrefGoogle Scholar

  • [20] Pal Y., Kalpit K. and Dash P. K., “Regression Rate Study of PVC/HTPB Hybrid Rocket Fuels,” International Journal of Mechanical and Industrial Engineering, Vol. 1, No. 1, 2011, pp. 64–67. https://doi.org/10.47893/IJMIE.2011.1015 CrossrefGoogle Scholar

  • [21] Kuo K. K. and Acharya R., “Solid Propellants and Their Combustion Characteristics,” Applications of Turbulent and Multiphase Combustion, Wiley, New York, 2012, Chap. 1. https://doi.org/10.1002/9781118127575 CrossrefGoogle Scholar

  • [22] Ang H. G. and Pisharath S., Energetic Polymers: Binders and Plasticizers for Enhancing Performance, Wiley–VCH, New York, 2012. Google Scholar

  • [23] DeLuca L. T., Maggi F., Dossi S., Weiser V., Franzin A., Gettwert V. and Heintz T., “High-Energy Metal Fuels for Rocket Propulsion: Characterization and Performance,” Chinese Journal of Explosives and Propellants, Vol. 36, No. 6, 2013, pp. 1–14. Google Scholar

  • [24] Shark S. C., Pourpoint T. L., Son S. F. and Heister S. D., “Performance of Dicyclopentadiene/H2O2-Based Hybrid Rocket Motors with Metal Hydride Additives,” Journal of Propulsion and Power, Vol. 29, No. 5, 2013, pp. 1122–1129. https://doi.org/10.2514/1.B34867 LinkGoogle Scholar

  • [25] DeLuca L. T., Galfetti L., Maggi F., Colombo G., Paravan C., Reina A., Dossi S., Fassina M. and Sossi A., “Metal Nanopowders: Production, Characterization, and Energetic Applications,” Metal Nanopowder: Production, Characterization, and Energetic Applications, edited by Gromov A. A. and Teipel U., 1st ed., Wiley-VCH, New York, 2014, Chap. 12. Google Scholar

  • [26] Karabeyoglu A. and Arkun U., “Evaluation of Fuel Additives for Hybrid Rockets and SFRJ Systems,” 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper 2014-3647, 2014. https://doi.org/10.2514/6.2014-3647 Google Scholar

  • [27] Kafafy R., Azami M. H. and Idres M., “Effect of Varying Design Options on the Transient Behavior of a Hybrid Rocket Motor,” Journal of Aerospace Technology and Management, Vol. 6, No. 1, 2014, pp. 69–82. https://doi.org/10.5028/jatm.v6i1.268 CrossrefGoogle Scholar

  • [28] Kubota N., “Thermochemistry of Combustion,” Propellants and Explosives: Thermochemical Aspects of Combustion, 3rd ed., Wiley–VCH, New York, 2015, Chap. 2. https://doi.org/10.1002/9783527693481 Google Scholar

  • [29] Kubota N., “Energetics of Propellants and Explosives,” Propellants and Explosives: Thermochemical Aspects of Combustion, 3rd ed., Wiley–VCH, New York, 2015, Chap. 4. https://doi.org/10.1002/9783527693481 CrossrefGoogle Scholar

  • [30] Szala M., Maranda A. and Florczak B., “Investigation of Selected Ingredients of Composite Propellants Using DTA, SEM and Calorimetric Techniques,” Central European Journal of Energetic Materials, Vol. 12, No. 2, 2015, pp. 323–330. Google Scholar

  • [31] Jens E. T., “Hybrid Rocket Combustion and Applications to Space Exploration Missions,” Ph.D. Dissertation, Stanford Univ., Stanford, CA, 2015. Google Scholar

  • [32] Faenza M., Barato F., Lazzarin M. and Pavarin D., “Hybrid Rocket Motors Regression Rate Prediction through CFD Simulations,” 6th European Conference for Aeronautics and Space Sciences, EUCASS Paper 2015-074, 2015. https://doi.org/10.13009/EUCASS2017-614 Google Scholar

  • [33] Cican G. and Mitrache A. D., “Rocket Solid Propellant Alternative Based on Ammonium Dinitramide,” National Institute for Aerospace Research (INCAS) Bulletin, Vol. 9, No. 1, 2017, pp. 17–24. https://doi.org/10.13111/2066-8201.2017.9.1.2 Google Scholar

  • [34] Mallick L., Lal S., Reshmi S., Namboothiri I. N. N., Chowdhury A. and Kumbhakarna N., “Theoretical Studies on the Propulsive Performance and Explosive Performance of Strained Polycyclic Cage Compounds,” New Journal of Chemistry, Vol. 41, No. 3, 2017, pp. 920–930. https://doi.org/10.1039/C6NJ02444K CrossrefGoogle Scholar

  • [35] Badgujar D. M., Talawar M. B., Zarko V. E. and Mahulikar P. P., “New Directions in the Area of Modern Energetic Polymers: An Overview,” Combustion, Explosion, and Shockwaves, Vol. 53, No. 4, 2017, pp. 371–387. https://doi.org/10.1134/S0010508217040013 CrossrefGoogle Scholar

  • [36] DeLuca L. T., Bohn M. A., Gettwert V., Weiser V. and Tagliabue C., “Innovative Solid Rocket Propellant Formulations for Space Propulsion,” Energetic Materials Research, Applications, and New Technologies, edited by Goncalves R. F. B., Rocco J. A. F. F. and Iha K., ICI Global, Hershey, PA, 2018, Chap. 1. https://doi.org/10.4018/978-1-5225-2903-3 Google Scholar

  • [37] Bladholm V., “Organic Fillers for Solid Rocket Fuel,” M.S. Thesis, KTH Royal Inst. of Technology, Stockholm, 2018. Google Scholar

  • [38] Kumar P., “An Overview on Properties, Thermal Decomposition, and Combustion Behavior of ADN and AND Based Solid Propellants,” Defence Technology, Vol. 14, No. 6, 2018, pp. 661–673. https://doi.org/10.1016/j.dt.2018.03.009 CrossrefGoogle Scholar

  • [39] Heister S. D., Anderson W. E., Pourpoint T. L. and Cassady R. J., “Combustion and Thermochemistry,” Rocket Propulsion, 1st ed., Cambridge Univ. Press, Cambridge, England, U.K., 2019, Chap. 5. https://doi.org/10.1017/9781108381376 CrossrefGoogle Scholar

  • [40] Tarifa M. C. and Pizzuti L., “Theoretical Performance Analysis of Hybrid Rocket Propellants Aiming at the Design of a Test Bench and a Propulsive System,” 8th European Conference for Aeronautics and Space Sciences, EUCASS Paper 2019-488, 2019. https://doi.org/10.13009/EUCASS2019-488 Google Scholar

  • [41] Krishnan S. and Raghavan J., “Thermodynamic Data,” Chemical Rockets: Performance Prediction and Internal Ballistics Design, Springer, New York, 2020, Chap. 6. https://doi.org/10.1007/978-3-030-26965-4_6 Google Scholar

  • [42] Cruise D. R., “Theoretical Computations of Equilibrium Compositions, Thermodynamic Properties, and Performance Characteristics of Propellant Systems,” Naval Weapons Center ADA-069832, China Lake, CA, 1979. Google Scholar

  • [43] Benson S. W. and Buss J. H., “Additivity Rules for the Estimation of Molecular Properties. Thermodynamic Properties,” Journal of Chemical Physics, Vol. 29, No. 3, 1958, pp. 546–572. https://doi.org/10.1063/1.1744539 CrossrefGoogle Scholar

  • [44] Benson S. W., Cruickshank F. R., Golden D. M., Haugen G. R., O’Neal H. E., Rodgers A. S., Shaw R. and Walsh R., “Additivity Rules for the Estimation of Thermochemical Properties,” Chemical Reviews, Vol. 69, No. 3, 1969, pp. 279–324. https://doi.org/10.1021/cr60259a002 CrossrefGoogle Scholar

  • [45] Eigenmann H. K., Golden D. M. and Benson S. W., “Revised Group Additivity Parameters for the Enthalpies of Formation of Oxygen-Containing Organic Compounds,” Journal of Physical Chemistry, Vol. 77 No. 13, 1973, pp. 1687–1691. https://doi.org/10.1021/j100632a019 Google Scholar

  • [46] Benson S. W., Thermochemical Kinetics: Methods for the Estimation of Thermochemical Data and Rate Parameters, 2nd ed., Wiley, New York, 1976. Google Scholar

  • [47] Cohen N., “Revised Group Additivity Values for Enthalpies of Formation (at 298 K) of Carbon-Hydrogen and Carbon-Hydrogen-Oxygen Compounds,” Journal of Physical and Chemical Reference Data, Vol. 25, No. 6, 1996, pp. 1411–1481. https://doi.org/10.1063/1.555988 CrossrefGoogle Scholar

  • [48] Domalski E. S. and Hearing E. D., “Estimation of the Thermodynamic Properties of Hydrocarbons at 298.15,” Journal of Physical and Chemical Reference Data, Vol. 17, No. 4, 1988, pp. 1637–1678. https://doi.org/10.1063/1.555814 CrossrefGoogle Scholar

  • [49] Domalski E. S. and Hearing E. D., “Estimation of the Thermodynamic Properties of C-H-N-O-S-Halogen Compounds at 298.15,” Journal of Physical and Chemical Reference Data, Vol. 22, No. 4, 1993, pp. 805–1159. https://doi.org/10.1063/1.555927 CrossrefGoogle Scholar

  • [50] Salmon A. and Dalmazzone D., “Prediction of Enthalpy of Formation in the Solid State (at 298.15 K) Using Second-Order Group Contributions. Part 1. Carbon-Hydrogen and Carbon-Hydrogen-Oxygen Compounds,” Journal of Physical and Chemical Reference Data, Vol. 35, No. 3, 2006, pp. 1443–1457. https://doi.org/10.1063/1.2203111 CrossrefGoogle Scholar

  • [51] Salmon A. and Dalmazzone D., “Prediction of Enthalpy of Formation in the Solid State (at 298.15 K) Using Second-Order Group Contributions. Part 2. Carbon-Hydrogen, Carbon-Hydrogen-Oxygen, and Carbon-Hydrogen-Nitrogen-Oxygen Compounds,” Journal of Physical and Chemical Reference Data, Vol. 36, No. 1, 2007, pp. 19–58. https://doi.org/10.1063/1.2435401 CrossrefGoogle Scholar

  • [52] Holmes J. L. and Aubry C., “Group Additivity Values for Estimating the Enthalpy of Formation of Organic Compounds: An Update and Reappraisal. 1. C, H, and, O,” Journal of Physical Chemistry A, Vol. 115, No. 38, 2011, pp. 10,576–10,586. https://doi.org/10.1021/jp202721k Google Scholar

  • [53] Holmes J. L. and Aubry C., “Group Additivity Values for Estimating the Enthalpy of Formation of Organic Compounds: An Update and Reappraisal. 2. C, H, N, O, S, and Halogens,” Journal of Physical Chemistry A, Vol. 116, No. 26, 2012, pp. 7196–7209. https://doi.org/10.1021/jp303780m CrossrefGoogle Scholar

  • [54] Van Krevelen D. W. and Chermin H. A. G., “Estimation of the Free Enthalpy (Gibbs Free Energy) of Formation of Organic Compounds from Group Contributions,” Chemical Engineering Science, Vol. 1, No. 2, 1951, pp. 66–80. https://doi.org/10.1016/0009-2509(51)85002-4 CrossrefGoogle Scholar

  • [55] Van Krevelen D. W. and Nijenhuis K., “Thermochemical Properties,” Properties of Polymers: Their Correlation with Chemical Structure, their Numerical Estimation and Prediction from Additive Group Contributions, 4th ed., Elsevier, New York, 2008, Chap. 20. Google Scholar

  • [56] NIST Standard Reference Database 25, NIST Structures and Properties Database and Estimation Program, 2018, https://webbook.nist.gov/chemistry/grp-add/ga-app/. Google Scholar

  • [57] Cohen N. and Benson S. W., “Estimation of Heats of Formation of Organic Compounds by Additivity Methods,” Chemical Reviews, Vol. 93, No. 7, 1993, pp. 2419–2438. https://doi.org/10.1021/cr00023a005 CrossrefGoogle Scholar

  • [58] Burke S. M., Simmie J. M. and Curran H. J., “Critical Evaluation of Thermochemical Properties of C1–C4 Species: Updated Group-Contributions to Estimate Thermochemical Properties,” Journal of Physical and Chemical Reference Data, Vol. 44, No. 1, 2015, Paper 013101. https://doi.org/10.1063/1.4902535 Google Scholar

  • [59] Franklin J. L., “Prediction of Heat and Free Energies of Organic Compounds,” Industrial and Engineering Chemistry, Vol. 41, No. 5, 1949, pp. 1070–1076. https://doi.org/10.1021/ie50473a041 CrossrefGoogle Scholar

  • [60] Pitzer K. S., “The Vibration Frequencies and Thermodynamic Functions of Long Chain Hydrocarbons,” Journal of Chemical Physics, Vol. 8, No. 9, 1940, pp. 711–720. https://doi.org/10.1063/1.1750742 CrossrefGoogle Scholar

  • [61] Scheffer F. E. C., Toepassingen van De Thermodynamika Chemische Processen, Waltman, Delft, The Netherlands, 1945. Google Scholar

  • [62] Whitmore S. A., Petersen Z. W. and Eilers S. D., “Analytical and Experimental Comparisons of HTPB and ABS Hybrid Rocket Fuels,” 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper 2011-5909, 2011. https://doi.org/10.2514/6.2011-5909 LinkGoogle Scholar

  • [63] Whitmore S. A., Petersen Z. W. and Eilers S. D., “Comparing Hydroxyl Terminated Polybutadiene and Acrylonitrile Butadiene Styrene as Hybrid Rocket Fuels,” Journal of Propulsion and Power, Vol. 29, No. 3, 2013, pp. 582–592. https://doi.org/10.2514/1.B34382 LinkGoogle Scholar

  • [64] Haddad T. S., Moore L. M. J., Reams J. T., Ford M. D., Marcischak J. C., Guenthner A. J., Mabry J. M. and Ghiassi K. B., “NMR Analysis of Hydroxyl-Terminated Polybutadiene End Groups and Reactivity Differences with Monoisocyanates,” Journal of Polymer Science Part A: Polymer Chemistry, Vol. 56, No. 23, 2018, pp. 2665–2671. https://doi.org/10.1002/pola.29250 CrossrefGoogle Scholar

  • [65] Gordon S. and McBride B. J., “Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications. Part I: Analysis,” NASA Reference Publication 1311, 1994. Google Scholar

  • [66] Gordon S. and McBride B. J., “Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications. Part II: Users Manual and Program Description,” NASA Reference Publication 1311, 1996. Google Scholar

  • [67] Sutton G. P. and Biblarz O., “Hybrid Propellant Rockets,” Rocket Propulsion Elements, 8th ed., Wiley, New York, 2010, Chap. 16. Google Scholar

  • [68] Heister S. and Wernimont E., “Hydrogen Peroxide, Hydroxyl Ammonium Nitrate, and Other Storable Oxidizers,” Fundamentals of Hybrid Rocket Combustion and Propulsion, edited by Kuo K. K. and Chiaverini M. J., 2007, Chap. 11. https://doi.org/10.2514/4.866876 Google Scholar

  • [69] NIST Chemistry WebBook, NIST Standard Reference Database Number 69, 2020. https://doi.org/10.18434/T4D303 Google Scholar