Skip to main content
Skip to article control options
No AccessTechnical Notes

Some Improvements to the γ−Reθt Transition Model

Published Online:https://doi.org/10.2514/1.J061224
Free first page

References

  • [1] Slotnick J., Khodadoust A., Alonso J., Darmofal D., Gropp W., Lurie E. and Mavriplis D., “CFD Vision 2030 Study: A Path to Revolutionary Computational Aerosciences,” NASA CR-2014-218178, 2014. Google Scholar

  • [2] Smith A. M. O. and Gamberoni N., “Transition, Pressure Gradient and Stability Theory,” Douglas Aircraft Co. Rept.  ES 26388, Santa Monica, CA, 1956. Google Scholar

  • [3] Van Ingen J. L., “A Suggested Semi-Empirical Method for the Calculation of the Boundary Layer Transition Region,” Technische Hogeschool Delft, Vliegtuigbouwkunde Rept.  VTH-74, Delft, The Netherlands, 1956. Google Scholar

  • [4] Suzen Y. B. and Huang P. G., “Modeling of Flow Transition Using an Intermittency Transport Equation,” Journal of Fluids Engineering, Vol. 122, No. 2, June 2000, pp. 273–284. https://doi.org/10.1115/1.483255 CrossrefGoogle Scholar

  • [5] Menter F. R., Esch T. and Kubacki S., “Transition Modelling Based on Local Variables,” Engineering Turbulence Modelling and Experiments 5, edited by Rodi W. and Fueyo N., Elsevier, Amsterdam, 2002, pp. 555–564. https://doi.org/10.1016/B978-008044114-6/50053-3 CrossrefGoogle Scholar

  • [6] Langtry R. B., “A Correlation-Based Transition Model Using Local Variables for Unstructured Parallelized CFD Codes,” Ph.D. Thesis, Univ. of Stuttgart, Stuttgart, Germany, 2006. https://doi.org/10.18419/opus-1705 Google Scholar

  • [7] Langtry R. B. and Menter F. R., “Correlation-Based Transition Modeling for Unstructured Parallelized Computational Fluid Dynamics Codes,” AIAA Journal, Vol. 47, No. 12, 2009, pp. 2894–2906. https://doi.org/10.2514/1.42362 LinkGoogle Scholar

  • [8] Medida S. and Baeder J. D., “A New Crossflow Transition Onset Criterion for RANS Turbulence Models,” 21st AIAA Computational Fluid Dynamics Conference, AIAA Paper 2013-3081, June 2013. https://doi.org/10.2514/6.2013-3081 Google Scholar

  • [9] Grabe C. and Krumbein A., “Extension of the γReθt Model for Prediction of Crossflow Transition,” 52nd Aerospace Sciences Meeting, AIAA Paper 2014-1269, Jan. 2014. https://doi.org/10.2514/6.2014-1269 Google Scholar

  • [10] Langtry R., Sengupta K., Yeh D. T. and Dorgan A. J., “Extending the γReθt Correlation Based Transition Model for Crossflow Effects,” 45th AIAA Fluid Dynamics Conference, AIAA Paper 2015-2474, June 2015. https://doi.org/10.2514/6.2015-2474 Google Scholar

  • [11] Kim D., “Boundary Layer Transition Models for CFD: Contributions to Naval Hydrodynamics Applications,” Ph.D. Thesis, Univ. of Iowa, Iowa City, 2021. Google Scholar

  • [12] Menter F. R., Smirnov P. E., Liu T. and Avancha R., “A One-Equation Local Correlation-Based Transition Model,” Flow, Turbulence and Combustion, Vol. 95 No. 4, 2015, pp. 583–619. https://doi.org/10.1007/s10494-015-9622-4 CrossrefGoogle Scholar

  • [13] Kim D., Kim Y., Li J., Wilson R. V., Martin J. E. and Carrica P. M., “Boundary Layer Transition Models for Naval Applications: Capabilities and Limitations,” Journal of Ship Research, Vol. 63, No. 4, 2019, pp. 294–307. https://doi.org/10.5957/JOSR.09180066 Google Scholar

  • [14] Menter F. R., Langtry R. B., Likki S. R., Suzen Y. B., Huang P. G. and Völker S., “A Correlation-Based Transition Model Using Local Variables—Part I: Model Formulation,” Journal of Turbomachinery, Vol. 128, No. 3, July 2006, pp. 413–422. https://doi.org/10.1115/1.2184352 CrossrefGoogle Scholar

  • [15] Abu-Ghannam B. J. and Shaw R., “Natural Transition of Boundary Layers—The Effects of Turbulence, Pressure Gradient, and Flow History,” Journal of Mechanical Engineering Science, Vol. 22, No. 5, 1980, pp. 213–228. https://doi.org/10.1243/JMES_JOUR_1980_022_043_02 CrossrefGoogle Scholar

  • [16] Savill A. M., “One-Point Closures Applied to Transition,” Turbulence and Transition Modelling, edited by Hallbäck M., Henningson D. S., Johansson A. V. and Alfredsson P. H., Springer, Dordrecht, 1996, pp. 233–268. https://doi.org/10.1007/978-94-015-8666-5_6 CrossrefGoogle Scholar

  • [17] Grabe C., Shengyang N. and Krumbein A., “Transition Transport Modeling for the Prediction of Crossflow Transition,” 34th AIAA Applied Aerodynamics Conference, AIAA Paper 2016-3572, June 2016. https://doi.org/10.2514/6.2016-3572 Google Scholar

  • [18] Cliquet J., Houdeville R. and Arnal D., “Application of Laminar-Turbulent Transition Criteria in Navier-Stokes Computations,” AIAA Journal, Vol. 46, No. 5, 2008, pp. 1182–1190. https://doi.org/10.2514/1.30215 LinkGoogle Scholar

  • [19] Kruse M., Munoz F., Radespiel R. and Grabe C., “Transition Prediction Results for Sickle Wing and NLF (1)-0416 Test Cases,” 2018 AIAA Aerospace Sciences Meeting, AIAA Paper 2018-0537, Jan. 2018. https://doi.org/10.2514/6.2018-0537 Google Scholar

  • [20] Kreplin H. P., Vollmers H. and Meier H. U., “Wall Shear Stress Measurements on an Inclined Prolate Spheroid in the DFVLR 3 m x 3 m Low Speed Wind Tunnel,” DFVLR-AVA Rept. IB 22-84 A 33, Göttingen, Germany, 1985. Google Scholar

  • [21] Krumbein A., Krimmelbein N. and Grabe C., “Streamline-Based Transition Prediction Techniques in an Unstructured Computational Fluid Dynamics Code,” AIAA Journal, Vol. 55, No. 5, 2017, pp. 1548–1564. https://doi.org/10.2514/1.J054990 LinkGoogle Scholar