Skip to main content
Skip to article control options
No AccessRegular Articles

Direct Numerical Simulation of Flow over a Triangular Airfoil Under Martian Conditions

Published Online:https://doi.org/10.2514/1.J061454

Martian conditions present various challenges when designing rotorcraft. Specifically, the thin atmosphere and low sound speed require Martian rotor blades to operate in a low-Reynolds-number (1000–10,000) compressible regime, for which conventional airfoils are not designed. Here, we use PyFR to undertake high-order direct numerical simulations (DNS) of flow over a triangular airfoil at a Mach number of 0.15 and Reynolds number of 3000. Initially, spanwise periodic DNS are undertaken. Extending the domain-span-to-chord ratio from 0.3 to 0.6 leads to better agreement with wind-tunnel data at higher angles of attack, when the flow is separated. This is because smaller domain spans artificially suppress three-dimensional breakdown of coherent structures above the suction surface of the airfoil. Subsequently, full-span DNS in a virtual wind tunnel are undertaken, including all wind-tunnel walls. These capture blockage and wall boundary-layer effects, leading to better agreement with wind-tunnel data for all angles of attack compared to spanwise periodic DNS. The results are important in terms of understanding discrepancies between previous spanwise periodic DNS and wind-tunnel data. They also demonstrate the utility of high-order DNS as a tool for accurately resolving flow over triangular airfoils under Martian conditions.

References

  • [1] Balaram J. B., Canham T., Duncan C., Golombek M., Grip H. F., Johnson W., Maki J., Quon A., Stern R. and Zhu D., “Mars Helicopter Technology Demonstrator,” AIAA Atmospheric Flight Mechanics Conference, AIAA Paper 2018-0023, 2018. https://doi.org/10.2514/6.2018-0023 Google Scholar

  • [2] Koning W. J. F., Johnson W. and Grip H. F., “Improved Mars Helicopter Aerodynamic Rotor Model for Comprehensive Analyses,” AIAA Journal, Vol. 57, No. 9, Sept. 2019, pp. 3969–3979. https://doi.org/10.2514/1.J058045 LinkGoogle Scholar

  • [3] Anyoji M., Nonomura T., Aono H., Oyama A., Fujii K., Nagai H. and Asai K., “Computational and Experimental Analysis of a High-Performance Airfoil Under Low-Reynolds-Number Flow Condition,” Journal of Aircraft, Vol. 51, No. 6, 2014, pp. 1864–1872. https://doi.org/10.2514/1.C032553 LinkGoogle Scholar

  • [4] Anyoji M., Nose K., Ida S., Numata D., Nagai H. and Asai K., “Low Reynolds Number Airfoil Testing in a Mars Wind Tunnel,” 40th Fluid Dynamics Conference and Exhibit, AIAA Paper 2010-4627, 2010. https://doi.org/10.2514/6.2010-4627 Google Scholar

  • [5] Nagai H., Asai K., Numata D., Suwa T. and Anyoji M., “Characteristics of Low-Reynolds Number Airfoils in a Mars Wind Tunnel,” 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, AIAA Paper 2013-0073, 2013. https://doi.org/10.2514/6.2013-73 Google Scholar

  • [6] Obata A. and Sinohara S., “Flow Visualization Study of the Aerodynamics of Modeled Dragonfly Wings,” AIAA Journal, Vol. 47, No. 12, Dec. 2009, pp. 3043–3046. https://doi.org/10.2514/1.43836 LinkGoogle Scholar

  • [7] Okamoto M. and Azuma A., “Experimental Study on Aerodynamic Characteristics of Unsteady Wings at Low Reynolds Number,” AIAA Journal, Vol. 43, No. 12, Dec. 2005, pp. 2526–2536. https://doi.org/10.2514/1.14813 LinkGoogle Scholar

  • [8] Hidaka H. and Okamoto M., “An Experimental Study of Triangular Airfoils for Mars Airplane,” Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, Vol. 12, 2014, pp. 21–27. https://doi.org/10.2322/tastj.12.Pk_21 CrossrefGoogle Scholar

  • [9] Johnson W., Withrow-Maser S., Young L., Malpica C., Koning W. J. F., Kuang W., Fehler M., Tuano A., Chan A., Datta A., Chi C., Lumba R., Escobar D., Balaram J., Tzanetos T. and Grip H. F., “Mars Science Helicopter Conceptual Design,” 2020, http://www.sti.nasa.gov [retrieved 15 May 2021]. Google Scholar

  • [10] Munday P., Taira K., Suwa T., Numata D. and Asai K., “Non-Linear Lift on a Triangular Airfoil in Low-Reynolds-Number Compressible Flow,” Journal of Aircraft, Vol. 52, No. 3, May 2015, pp. 924–931. https://doi.org/10.2514/1.C032983 LinkGoogle Scholar

  • [11] Suwa T., Nose K., Numata D., Nagai H. and Asai K., “Compressibility Effects on Airfoil Aerodynamics at Low Reynolds Number,” 30th AIAA Applied Aerodynamics Conference, AIAA Paper 2012-3029, 2012. https://doi.org/10.2514/6.2012-3029 Google Scholar

  • [12] Koning W. J. F., Romander E. A. and Johnson W., “Optimization of Low Reynolds Number Airfoils for Martian Rotor Applications Using an Evolutionary Algorithm,” AIAA Science and Technology Forum and Exposition (AIAA SciTech), AIAA Paper 2020-0084, 2020. https://doi.org/10.2514/6.2020-0084 Google Scholar

  • [13] Yang H. and Agarwal R., “CFD Simulations of a Triangular Airfoil for Martian Atmosphere in Low-Reynolds Number Compressible Flow,” AIAA Aviation Forum, AIAA Paper 2019-2923, June 2019. https://doi.org/10.2514/6.2019-2923 Google Scholar

  • [14] Han X., Rahman M. and Agarwal R., “Wall-Distance Free Wray-Agarwal Turbulence Model with Elliptic Blending,” AIAA Aviation Forum, AIAA Paper 2018-4044, June 2018. https://doi.org/10.2514/6.2018-4044 Google Scholar

  • [15] Witherden F., Farrington A. and Vincent P., “PyFR: An Open Source Framework for Solving Advection-Diffusion Type Problems on Streaming Architectures Using the Flux Reconstruction Approach,” Computer Physics Communications, Vol. 185, No. 11, Nov. 2014, pp. 3028–3040. https://doi.org/10.1016/j.cpc.2014.07.011 CrossrefGoogle Scholar

  • [16] Anyoji M., Nose K., Ida S., Numata D., Nagai H. and Asai K., “Development of a Low-Density Wind Tunnel for Simulating Martian Atmospheric Flight,” Transactions of the Japanese Society for Artificial Intelligence, Aerospace Technology Japan, Vol. 9, 2011, p. 21–27. https://doi.org/10.2322/tastj.9.21 Google Scholar

  • [17] Pekardan C. and Alexeenko A., “Rarefaction Effects for Transonic Airfoil Flows at Low Reynolds Numbers,” AIAA Journal, Vol. 56, No. 2, Feb. 2018. https://doi.org/10.2514/1.J056051 Google Scholar

  • [18] Hoerner S. F., “Drag at High Speeds as Affected by Viscosity and Rarefraction,” Fluid-Dynamic Drag, Sighard F. Hoerner, Bakersfield, CA, 1965. Google Scholar

  • [19] Huynh H., “A Flux Reconstruction Approach to High-Order Schemes Including Discontinuous Galerkin Methods,” AIAA Paper 2007-4079, 2007, pp. 1–42. Google Scholar

  • [20] Kennedy C. A., Carpenter M. H. and Lewis R., “Low-Storage, Explicit Runge–Kutta Schemes for the Compressible Navier–Stokes Equations,” Applied Numerical Mathematics, Vol. 35, No. 3, 2000, pp. 177–219. https://doi.org/10.1016/S0168-9274(99)00141-5 CrossrefGoogle Scholar

  • [21] Buxton O., Laizet S. and Ganapathisubramani B., “The Effects of Resolution and Noise on Kinematic Features of Fine-Scale Turbulence,” Experiments in Fluids, Vol. 51, No. 5, 2011, pp. 1417–1437. https://doi.org/10.1007/s00348-011-1159-2 Google Scholar