Skip to main content
Skip to article control options
No AccessRegular Articles

High-Fidelity Aerostructural Optimization with a Geometrically Nonlinear Flutter Constraint

Published Online:https://doi.org/10.2514/1.J062127

When designing aircraft, avoiding dynamic aeroelastic instabilities such as flutter is a key requirement. One way to meet this requirement is to use a multidisciplinary design optimization subject to a flutter constraint. Flutter-constrained design optimizations have used geometrically linear detailed models, which do not accurately predict flutter for very flexible aircraft, or geometrically nonlinear low-order models, which do not accurately trade off cruise range and structural mass. This paper presents a framework for integrating a geometrically nonlinear, subsonic flutter constraint that captures the large in-flight deflections of very flexible aircraft into high-fidelity gradient-based aerostructural optimization. The cruise range and stress constraints are computed accurately with detailed aerostructural analyses, which use a built-up finite element model coupled to Reynolds-averaged Navier–Stokes computational fluid dynamics. The detailed model is condensed to a low-order aeroelastic model to compute the geometrically nonlinear flutter constraint and its adjoint derivatives with computational cost and robustness suitable for optimization. The framework is demonstrated by maximizing the cruise range of a subsonic high-aspect-ratio wing with respect to panel thicknesses, sweep, and span. The impact of the geometrically nonlinear flutter constraint highly depends on the in-flight deformation level. At low deflection levels, sweeping the wing backward is the most effective flutter prevention method, and the flutter constraint has little impact on the achievable cruise range. At high deflection levels, shortening the wing span is necessary to suppress flutter, reducing the achievable cruise range by up to 5.9%. This work is a step toward making multidisciplinary design optimization a practical tool for designing the energy-efficient, very flexible aircraft of the future, which require geometrically nonlinear flutter analyses early in the design cycle to prevent flutter.

References

  • [1] Afonso F., Vale J., Oliveira É., Lau F. and Suleman A., “A Review on Non-Linear Aeroelasticity of High Aspect-Ratio Wings,” Progress in Aerospace Sciences, Vol. 89, Suppl. C, 2017, pp. 40–57. https://doi.org/10.1016/j.paerosci.2016.12.004 Google Scholar

  • [2] Jonsson E., Riso C., Lupp C. A., Cesnik C. E. S., Martins J. R. R. A. and Epureanu B. I., “Flutter and Post-Flutter Constraints in Aircraft Design Optimization,” Progress in Aerospace Sciences, Vol. 109, Aug. 2019, Paper 100537. https://doi.org/10.1016/j.paerosci.2019.04.001 CrossrefGoogle Scholar

  • [3] Patil M. J., Hodges D. H. and Cesnik C. E. S., “Limit-Cycle Oscillations in High-Aspect-Ratio Wings,” Journal of Fluids and Structures, Vol. 15, No. 1, 2001, pp. 107–132. CrossrefGoogle Scholar

  • [4] Su W. and Cesnik C. E. S., “Nonlinear Aeroelasticity of a Very Flexible Blended-Wing-Body Aircraft,” Journal of Aircraft, Vol. 47, No. 5, 2010, pp. 1539–1553. https://doi.org/10.2514/1.47317 LinkGoogle Scholar

  • [5] Tang D. and Dowell E. H., “Experimental and Theoretical Study on Aeroelastic Response of High-Aspect-Ratio Wings,” AIAA Journal, Vol. 39, No. 8, Aug. 2001, pp. 1430–1441. LinkGoogle Scholar

  • [6] Drachinsky A., Avin O., Raveh D. E., Ben-Shmuel Y. and Tur M., “Flutter Tests of the Pazy Wing,” 2022 AIAA SciTech Forum, AIAA Paper 2022-2186, 2022. https://doi.org/10.2514/6.2022-2186 LinkGoogle Scholar

  • [7] Cesnik C. E. S., Palacios R. and Reichenbach E. Y., “Reexamined Structural Design Procedures for Very Flexible Aircraft,” Journal of Aircraft, Vol. 51, No. 5, 2014, pp. 1580–1591. https://doi.org/10.2514/1.C032464 LinkGoogle Scholar

  • [8] Variyar A., Economon T. D. and Alonso J. J., “Design and Optimization of Unconventional Aircraft Configurations with Aeroelastic Constraints,” AIAA Paper 2017-0463, 2017. https://doi.org/10.2514/6.2017-0463 LinkGoogle Scholar

  • [9] Xie C., Meng Y., Wang F. and Wan Z., “Aeroelastic Optimization Design for High-Aspect-Ratio Wings with Large Deformation,” Shock and Vibration, Vol. 2017, Oct. 2017, pp. 1–16. CrossrefGoogle Scholar

  • [10] Werter N. P. and De Breuker R., “A Novel Dynamic Aeroelastic Framework for Aeroelastic Tailoring and Structural Optimisation,” Composite Structures, Vol. 158, Dec. 2016, pp. 369–386. https://doi.org/10.1016/j.compstruct.2016.09.044 CrossrefGoogle Scholar

  • [11] Rajpal D., Gillebaart E. and De Breuker R., “Preliminary Aeroelastic Design of Composite Wings Subjected to Critical Gust Loads,” Aerospace Science and Technology, Vol. 85, Feb. 2019, pp. 96–112. https://doi.org/10.1016/j.ast.2018.11.051 CrossrefGoogle Scholar

  • [12] Bordogna M. T., Lancelot P., Bettebghor D. and De Breuker R., “Aeroelastic Tailoring for Static and Dynamic Loads with Blending Constraints,” 17th International Forum on Aeroelasticity and Structural Dynamics, IFASD 2017, Vol. 2017, IFASD Paper 22, June 2017. Google Scholar

  • [13] Kenway G. K. W. and Martins J. R. R. A., “Multipoint High-Fidelity Aerostructural Optimization of a Transport Aircraft Configuration,” Journal of Aircraft, Vol. 51, No. 1, 2014, pp. 144–160. https://doi.org/10.2514/1.C032150 LinkGoogle Scholar

  • [14] Brooks T. R., Martins J. R. R. A. and Kennedy G. J., “Aerostructural Trade-Offs for Tow-Steered Composite Wings,” Journal of Aircraft, Vol. 57, No. 5, 2020, pp. 787–799. https://doi.org/10.2514/1.C035699 LinkGoogle Scholar

  • [15] Bons N. P., He X., Mader C. A. and Martins J. R. R. A., “Multimodality in Aerodynamic Wing Design Optimization,” AIAA Journal, Vol. 57, No. 3, 2019, pp. 1004–1018. https://doi.org/10.2514/1.J057294 LinkGoogle Scholar

  • [16] He S., Jonsson E., Mader C. A. and Martins J. R. R. A., “Aerodynamic Shape Optimization with Time Spectral Flutter Adjoint,” 2019 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper 2019-0697, 2019. https://doi.org/10.2514/6.2019-0697 LinkGoogle Scholar

  • [17] He S., “Aerodynamic Shape Optimization Using a Time-Spectral Approach for Limit Cycle Oscillation Prediction,” Ph.D. Thesis, Univ. of Michigan, Ann Arbor, MI, 2020. Google Scholar

  • [18] Jacobson K. E. and Stanford B. K., “Flutter-Constrained Optimization with the Linearized Frequency-Domain Approach,” AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022, AIAA Paper 2022-2242, 2022. https://doi.org/10.2514/6.2022-2242 Google Scholar

  • [19] Jonsson E., Mader C. A., Kennedy G. J. and Martins J. R. R. A., “Computational Modeling of Flutter Constraint for High-Fidelity Aerostructural Optimization,” 2019 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper 2019-2354, 2019. https://doi.org/10.2514/6.2019-2354 LinkGoogle Scholar

  • [20] Jonsson E., “High-Fidelity Aerostructural Optimization of Flexible Wings with Flutter Constraints,” Ph.D. Thesis, Univ. of Michigan, Ann Arbor, MI, 2020. Google Scholar

  • [21] Lupp C. A. and Cesnik C. E. S., “A Gradient-Based Flutter Constraint Including Geometrically Nonlinear Deformations,” 2019 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper 2019-1212, 2019. Google Scholar

  • [22] Lupp C. A., Cesnik C. E. S., Beran P., Deaton J. and Easterling D., “Including Geometrically Nonlinear Flutter Constraints in High Fidelity Aircraft Optimization,” International Forum on Aeroelasticity and Structural Dynamics (IFASD 2019), IFASD Paper 69, June 2019. Google Scholar

  • [23] Cestino E., Frulla G., Catelani D. and Linari M., “Numerical Simulation and Experimental Validation of Slender Wings Flutter Behaviour,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 233, No. 16, 2019, pp. 5913–5928. https://doi.org/10.1177/0954410019879820 CrossrefGoogle Scholar

  • [24] Ritter M., Hilger J. and Zimmer M., “Static and Dynamic Simulations of the Pazy Wing Aeroelastic Benchmark by Nonlinear Potential Aerodynamics and Detailed FE Model,” 2021 AIAA SciTech Forum, AIAA Paper 2021-1713, 2021. https://doi.org/10.2514/6.2021-1713 LinkGoogle Scholar

  • [25] Drachinsky A. and Raveh D. E., “Nonlinear Aeroelastic Analysis of Highly Flexible Wings Using the Modal Rotation Method,” AIAA Journal, Vol. 60, No. 5, 2022, pp. 1–13. https://doi.org/10.2514/1.j061065 LinkGoogle Scholar

  • [26] Cea A. and Palacios R., “Geometrically Nonlinear Effects on the Aeroelastic Response of a Transport Aircraft Configuration,” Journal of Aircraft, Vol. 60, No. 1, 2022, pp. 1–16. https://doi.org/10.2514/1.C036740 Google Scholar

  • [27] Jonsson E., Riso C., Monteiro B. B., Gray A. C., Martins J. R. R. A. and Cesnik C. E. S., “High-Fidelity Gradient-Based Wing Structural Optimization Including a Geometrically Nonlinear Flutter Constraint,” AIAA Journal, 2023. https://doi.org/10.2514/1.J061575 Google Scholar

  • [28] Skujins T. and Cesnik C. E. S., “Reduced-Order Modeling of Unsteady Aerodynamics Across Multiple Mach Regimes,” Journal of Aircraft, Vol. 51, No. 6, 2014, pp. 1681–1704. https://doi.org/10.2514/1.C032222 LinkGoogle Scholar

  • [29] Riso C., Sanghi D., Cesnik C. E. S., Vetrano F. and Teufel P., “Parametric Roll Maneuverability Analysis of a High-Aspect-Ratio-Wing Civil Transport Aircraft,” AIAA SciTech Forum, AIAA Paper 2020-1191, 2020, pp. 1–23. https://doi.org/10.2514/6.2020-1191 Google Scholar

  • [30] Riso C. and Cesnik C. E. S., “Correlations Between UM/NAST Nonlinear Aeroelastic Simulations and the Pre-Pazy Wing Experiment,” AIAA SciTech Forum, AIAA Paper 2021-1712, 2021. https://doi.org/10.2514/6.2021-1712 LinkGoogle Scholar

  • [31] Su W. and Cesnik C. E. S., “Strain-Based Geometrically Nonlinear Beam Formulation for Modeling Very Flexible Aircraft,” International Journal of Solids and Structures, Vol. 48, Nos. 16–17, 2011, pp. 2349–2360. https://doi.org/10.1016/j.ijsolstr.2011.04.012 CrossrefGoogle Scholar

  • [32] Hinton E., Rock T. and Zienkiewicz O. C., “A Note on Mass Lumping and Related Processes in the Finite Element Method,” Earthquake Engineering & Structural Dynamics, Vol. 4, No. 3, 1976, pp. 245–249. https://doi.org/10.1002/eqe.4290040305 CrossrefGoogle Scholar

  • [33] Medeiros R. R., Cesnik C. E., Stodieck O., Calderon D. E., Cooper J. E. and Coetzee E. B., “Comparison of Structural Model Reduction Methods Applied to a Large-Deformation Wing Box,” Aeronautical Journal, Vol. 125, No. 1292, 2021, pp. 1687–1709. https://doi.org/10.1017/aer.2021.73 CrossrefGoogle Scholar

  • [34] Riso C. and Cesnik C. E. S., “Impact of Low-Order Modeling on Aeroelastic Prediction for Very Flexible Wings,” Journal of Aircraft, 2023. https://doi.org/10.2514/1.C036869 Google Scholar

  • [35] Peters D. A., Hsieh M. C. A. and Torrero A., “A State-Space Airloads Theory for Flexible Airfoils,” Journal of the American Helicopter Society, Vol. 52, No. 4, 2007, pp. 329–342. https://doi.org/10.4050/JAHS.52.329 CrossrefGoogle Scholar

  • [36] Kreisselmeier G. and Steinhauser R., “Systematic Control Design by Optimizing a Vector Performance Index,” International Federation of Active Controls Symposium on Computer-Aided Design of Control Systems, Elsevier, Zurich, Switzerland, 1979. https://doi.org/10.1016/S1474-6670(17)65584-8 Google Scholar

  • [37] Wrenn G. A., “An Indirect Method for Numerical Optimization Using the Kreisselmeier–Steinhauser Function,” NASA Langley Research Center CR-4220, Hampton, VA, 1989. Google Scholar

  • [38] Poon N. M. K. and Martins J. R. R. A., “An Adaptive Approach to Constraint Aggregation Using Adjoint Sensitivity Analysis,” Structural and Multidisciplinary Optimization, Vol. 34, No. 1, 2007, pp. 61–73. https://doi.org/10.1007/s00158-006-0061-7 CrossrefGoogle Scholar

  • [39] Kenway G. K., Kennedy G. J. and Martins J. R. R. A., “A CAD-Free Approach to High-Fidelity Aerostructural Optimization,” Proceedings of the 13th AIAA/ISSMO Multidisciplinary Analysis Optimization Conference, AIAA Paper 2010-9231, 2010. https://doi.org/10.2514/6.2010-9231 Google Scholar

  • [40] Martins J. R. R. A. and Ning A., Engineering Design Optimization, Cambridge Univ. Press, Cambridge, England, U.K., 2021. https://doi.org/10.1017/9781108980647 CrossrefGoogle Scholar

  • [41] Kenway G. K. W., Kennedy G. J. and Martins J. R. R. A., “Scalable Parallel Approach for High-Fidelity Steady-State Aeroelastic Analysis and Adjoint Derivative Computations,” AIAA Journal, Vol. 52, No. 5, 2014, pp. 935–951. https://doi.org/10.2514/1.J052255 LinkGoogle Scholar

  • [42] Kennedy G. J. and Martins J. R. R. A., “A Parallel Aerostructural Optimization Framework for Aircraft Design Studies,” Structural and Multidisciplinary Optimization, Vol. 50, No. 6, 2014, pp. 1079–1101. https://doi.org/10.1007/s00158-014-1108-9 CrossrefGoogle Scholar

  • [43] Kenway G. K. W., Mader C. A., He P. and Martins J. R. R. A., “Effective Adjoint Approaches for Computational Fluid Dynamics,” Progress in Aerospace Sciences, Vol. 110, Oct. 2019, Paper 100542. https://doi.org/10.1016/j.paerosci.2019.05.002 CrossrefGoogle Scholar

  • [44] Yildirim A., Kenway G. K. W., Mader C. A. and Martins J. R. R. A., “A Jacobian-Free Approximate Newton–Krylov Startup Strategy for RANS Simulations,” Journal of Computational Physics, Vol. 397, Nov. 2019, Paper 108741. https://doi.org/10.1016/j.jcp.2019.06.018 CrossrefGoogle Scholar

  • [45] Secco N., Kenway G. K. W., He P., Mader C. A. and Martins J. R. R. A., “Efficient Mesh Generation and Deformation for Aerodynamic Shape Optimization,” AIAA Journal, Vol. 59, No. 4, 2021, pp. 1151–1168. https://doi.org/10.2514/1.J059491 LinkGoogle Scholar

  • [46] Gray J. S., Hwang J. T., Martins J. R. R. A., Moore K. T. and Naylor B. A., “OpenMDAO: An Open-Source Framework for Multidisciplinary Design, Analysis, and Optimization,” Structural and Multidisciplinary Optimization, Vol. 59, No. 4, 2019, pp. 1075–1104. https://doi.org/10.1007/s00158-019-02211-z CrossrefGoogle Scholar

  • [47] Gill P. E., Murray W. and Saunders M. A., “SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization,” SIAM Journal of Optimization, Vol. 12, No. 4, 2002, pp. 979–1006. https://doi.org/10.1137/S1052623499350013 CrossrefGoogle Scholar

  • [48] Wu N., Kenway G., Mader C. A., Jasa J. and Martins J. R. R. A., “pyOptSparse: A Python Framework for Large-Scale Constrained Nonlinear Optimization of Sparse Systems,” Journal of Open Source Software, Vol. 5, No. 54, 2020, Paper 2564. https://doi.org/10.21105/joss.02564 CrossrefGoogle Scholar

  • [49] Perez R. E., Jansen P. W. and Martins J. R. R. A., “pyOpt: A Python-Based Object-Oriented Framework for Nonlinear Constrained Optimization,” Structural and Multidisciplinary Optimization, Vol. 45, No. 1, 2012, pp. 101–118. https://doi.org/10.1007/s00158-011-0666-3 CrossrefGoogle Scholar

  • [50] Hodges D. H. and Dowell E. H., “Nonlinear Equations of Motion for the Elastic Bending and Torsion of Twisted Nonuniniform Rotor Blades,” NASA TN-D-7818, 1974, https://ntrs.nasa.gov/citations/19750005242. Google Scholar