Skip to main content
Skip to article control options
No AccessFull-Length Paper

Effect of Heat Pipe Figure of Merit on an Evaporating Thin Film

Published Online:https://doi.org/10.2514/1.T3980

The performance of a two-phase heat transport device such as the loop heat pipe is influenced by the evaporative heat transfer coefficient in the evaporator. From previous experiments with loop heat pipes, it has been observed that fluids with a high heat pipe figure of merit have a high heat transfer coefficient. Considering an evaporating extended thin film, this paper theoretically corroborates this experimental observation by deriving a direct link between the evaporative heat flux at the interface and the fluid figures of merit (namely interline heat flow parameter and heat pipe figure of merit) in the thin film. Numerical experiments with different working fluids clearly show that a fluid with high figure of merit also has a high cumulative heat transfer in the microregion encompassing the evaporating thin film. Thus, a loop heat pipe or heat pipe that uses a working fluid with a high interline heat flow parameter and heat pipe figure of merit will lead to a high evaporative heat transfer coefficient.

References

  • [1] Adoni A. A., Jasvanth V. S., Ambirajan A., Kumar D., Badarinarayana K. and Dutta P., “Evaporation Heat Transfer Coefficient in a Capillary Pumped Loop and Loop Heat Pipe for Different Working Fluids,” Heat Transfer Engineering, Vol. 33, No. 9, 2012, pp. 765–774. doi:https://doi.org/10.1080/01457632.2011.640890 HTEND2 0145-7632 CrossrefGoogle Scholar

  • [2] Derjaguin B. V. and Zorin Z. M., “Optical Study of the Adsorption and Surface Condensation of Vapor in the Vicinity of Saturation on Smooth Surface,” Proceedings of 2nd International Conference on Surface Activity, Vol. 2, No. 1, 1957, pp. 145–152. Google Scholar

  • [3] Potash M. and Wayner P. C.,, “Evaporation From a Two-Dimensional Extended Meniscus,” International Journal of Heat and Mass Transfer, Vol. 15, No. 10, 1972, pp. 1851–1863. doi:https://doi.org/10.1016/0017-9310(72)90058-0 IJHMAK 0017-9310 CrossrefGoogle Scholar

  • [4] Wayner P. C.,, Yao Y. K. and LaCroix L. V., “The Interline Heat-Transfer Coefficient of an Evaporating Wetting Film,” International Journal of Heat and Mass Transfer, Vol. 19, No. 5, 1976, pp. 487–492. doi:https://doi.org/10.1016/0017-9310(76)90161-7 IJHMAK 0017-9310 CrossrefGoogle Scholar

  • [5] Wayner P. C.,, “The Effect of the London-Van Der Waals Force on Interline Heat Transfer,” Journal of Heat Transfer, Vol. 100, No. 1, 1978, pp. 155–159. doi:https://doi.org/10.1115/1.3450490 JHTRAO 0022-1481 CrossrefGoogle Scholar

  • [6] Wayner P. C.,, “A Dimensionless Number for the Contact Line Evaporative Heat Sink,” Journal of Heat Transfer, Vol. 111, No. 3, 1989, pp. 813–815. doi:https://doi.org/10.1115/1.3250758 JHTRAO 0022-1481 CrossrefGoogle Scholar

  • [7] Wayner P. C.,, “A Constant Heat Flux Model of the Evaporating Interline Region,” International Journal of Heat and Mass Transfer, Vol. 21, No. 4, 1976, pp. 362–364. IJHMAK 0017-9310 Google Scholar

  • [8] Wayner P. C.,, “Effect of Interline Heat Flux on Meniscus Profile and Capillary Pressure,” AIAA Paper  78-403, 1978. Google Scholar

  • [9] Renk F. J. and Wayner P. C.,, “An Evaporating Ethanol Meniscus, Part II: Analytical Studies,” Journal of Heat Transfer, Vol. 101, No. 1, 1979, pp. 59–62. doi:https://doi.org/10.1115/1.3450936 JHTRAO 0022-1481 CrossrefGoogle Scholar

  • [10] Schonberg J. A. and Wayner P. C.,, “Analytical Solution for Integral Contact Line Evaporative Heat Sink,” Journal of Thermophysics and Heat Transfer, Vol. 6, No. 1, 1992, pp. 128–134. doi:https://doi.org/10.2514/3.327 JTHTEO 0887-8722 LinkGoogle Scholar

  • [11] Moosman S. and Homsy S. M., “Evaporating Meniscus of Wetting Fluids,” Journal of Colloid and Interface Science, Vol. 73, No. 1, 1980, pp. 212–223. doi:https://doi.org/10.1016/0021-9797(80)90138-1 JCISA5 0021-9797 CrossrefGoogle Scholar

  • [12] Hallinan K. P., Chebaro H. C., Kim S. J. and Chang W. S., “Evaporation from an Extended Meniscus for Nonisothermal Interfacial Conditions,” Journal of Thermophysics and Heat Transfer, Vol. 8, No. 4, 1994, pp. 709–716. doi:https://doi.org/10.2514/3.602 JTHTEO 0887-8722 LinkGoogle Scholar

  • [13] Chebaro H. C. and Hallinan K. P., “Boundary Conditions for an Evaporating Thin Film for Isothermal Interfacial Conditions,” Journal of Heat Transfer, Vol. 115, No. 3, 1993, pp. 816–819. doi:https://doi.org/10.1115/1.2910764 JHTRAO 0022-1481 CrossrefGoogle Scholar

  • [14] Khrustalev D. and Faghri A., “Heat Transfer During Evaporation on Capillary–Grooved Structures of Heat Pipes,” Journal of Heat Transfer, Vol. 117, No. 3, 1995, pp. 740–747. doi:https://doi.org/10.1115/1.2822638 JHTRAO 0022-1481 CrossrefGoogle Scholar

  • [15] Wang H., Garimella S. V. and Murthy J. Y., “Characteristics of an Evaporating Thin Film in a Microchannel,” International Journal of Heat and Mass Transfer, Vol. 50, No. 19–20, 2007, pp. 3933–3942. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.052 IJHMAK 0017-9310 CrossrefGoogle Scholar

  • [16] Ranjan R., Murthy J. Y. and Garimella S. V., “A Microscale Model for Thin-Film Evaporation in Capillary Wick Structures,” International Journal of Heat and Mass Transfer, Vol. 54, No. 1–3, 2011, pp. 169–179. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2010.09.037 IJHMAK 0017-9310 CrossrefGoogle Scholar

  • [17] Stephan P. C. and Busse C. A., “Analysis of the Heat Transfer Coefficient of Grooved Heat Pipe Evaporator Walls,” International Journal of Heat and Mass Transfer, Vol. 35, No. 2, 1992, pp. 383–391. doi:https://doi.org/10.1016/0017-9310(92)90276-X IJHMAK 0017-9310 CrossrefGoogle Scholar

  • [18] Khrustalev D. and Faghri A., “Fluid Flow Effects in Evaporation from Liquid–Vapor Meniscus,” Journal of Heat Transfer, Vol. 118, No. 3, 1996, pp. 725–730. doi:https://doi.org/10.1115/1.2822692 JHTRAO 0022-1481 CrossrefGoogle Scholar

  • [19] Holm F. W. and Goplen S. P., “Heat Transfer in the Meniscus Thin Film Tansition Region,” Journal of Heat Transfer, Vol. 101, No. 3, 1979, pp. 543–547. doi:https://doi.org/10.1115/1.3451025 JHTRAO 0022-1481 CrossrefGoogle Scholar

  • [20] Xu X. and Carey V. P., “Film Evaporation from a Micro-Grooved Surface—An Approximate Heat Transfer Model and its Comparision with Experimental Data,” Journal of Thermophysics and Heat Transfer, Vol. 4, No. 4, 1990, pp. 512–520. doi:https://doi.org/10.2514/3.215 JTHTEO 0887-8722 LinkGoogle Scholar

  • [21] Ha J. M. and Peterson G. P., “The Interline Heat Transfer of Evaporating Thin Films Along Micro Grooved Surface,” Journal of Heat Transfer, Vol. 118, No. 3, 1996, pp. 747–755. doi:https://doi.org/10.1115/1.2822695 JHTRAO 0022-1481 CrossrefGoogle Scholar

  • [22] Wulz H. and Embacher E., “Capillary Pumped Loops for Space Applications: Experimental and Theoretical Studies on the Performance of Capillary Evaporator Designs,” AIAA Paper  90-1739, 1990. Google Scholar

  • [23] Adoni A. A., Jasvanth V. S., Ambirajan A., Kumar D., Bhandari D. R., Badarinarayana K. and Dutta P., “Evaporation Heat Transfer Coefficient in a Capillary Pumped Loop for Different Working Fluids,” Proceedings of the 20th National and 9th International ISHMT-ASME Heat and Mass Transfer Conference, Indian Society for Heat and Mass Transfer Paper  10HMTC168, Mumbai, India, 4–6 Jan. 2010. Google Scholar

  • [24] Raiff R. J. and Wayner P. C.,, “Evaporation from a Porous Flow Control Element on a Porous Heat Source,” International Journal of Heat and Mass Transfer, Vol. 16, No. 10, 1973, pp. 1919–1929. doi:https://doi.org/10.1016/0017-9310(73)90209-3 IJHMAK 0017-9310 CrossrefGoogle Scholar

  • [25] Liao Q. and Zhao Q., “Evaporative Heat Transfer in a Capillary Structure Heated by a Grooved Block,” Journal of Thermophysics and Heat Transfer, Vol. 13, No. 1, 1999, pp. 126–133. doi:https://doi.org/10.2514/2.6410 JTHTEO 0887-8722 LinkGoogle Scholar

  • [26] Zhao T. S. and Liao Q., “On Capillary-Driven Flow and Phase-Change Heat Transfer in a Porous Structure Heated by a Finned Surface: Measurements and Modeling,” International Journal of Heat and Mass Transfer, Vol. 43, No. 7, 2000, pp. 1141–1155. doi:https://doi.org/10.1016/S0017-9310(99)00206-9 IJHMAK 0017-9310 CrossrefGoogle Scholar

  • [27] Liao Q. and Zhao T. S., “A Visual Study of Phase–Change Heat Transfer in a Two–Dimensional Porous Structure with a Partial Heating Boundary,” International Journal of Heat and Mass Transfer, Vol. 45, No. 1, 2002, pp. 165–172. IJHMAK 0017-9310 CrossrefGoogle Scholar

  • [28] Demidov A. S. and Yatsenko E. S., “Investigation of Heat and Mass Transfer in the Evaporation Zone of a Heat Pipe Operating by the Inverted Meniscus Principle,” International Journal of Heat and Mass Transfer, Vol. 37, No. 14, 1994, pp. 2155–2163. doi:https://doi.org/10.1016/0017-9310(94)90317-4 IJHMAK 0017-9310 CrossrefGoogle Scholar

  • [29] Cao Y. and Faghri A., “Conjugate Analysis of a Flat-Plate Type Evaporator for Capillary Pumped Loops with Three-Dimensional Vapour Flow in the Grooves,” International Journal of Heat and Mass Transfer, Vol. 37, No. 3, 1994, pp. 401–409. doi:https://doi.org/10.1016/0017-9310(94)90074-4 IJHMAK 0017-9310 CrossrefGoogle Scholar

  • [30] Cao Y. and Faghri A., “Analytical Solution of Flow and Heat Transfer in a Porous Structure with Partial Heating and Evaporation on the Upper Surface,” International Journal of Heat and Mass Transfer, Vol. 37, No. 10, 1994, pp. 1525–1533. doi:https://doi.org/10.1016/0017-9310(94)90154-6 IJHMAK 0017-9310 CrossrefGoogle Scholar

  • [31] Figus C., LeBray Y., Bories S. and Prat M., “Heat and Mass Transfer with Phase Change in a Porous Structure Partially Heated: Continuum Model and Pore Network Simulations,” International Journal of Heat and Mass Transfer, Vol. 42, No. 14, 1999, pp. 2557–2569. doi:https://doi.org/10.1016/S0017-9310(98)00342-1 IJHMAK 0017-9310 CrossrefGoogle Scholar

  • [32] Yan Y. H. and Ochterbeck J. M., “Numerical Investigation of the Steady-State Operation of a Cylindrical Capillary Pumped Loop Evaporator,” Journal of Electronic Packaging, Vol. 125, No. 2, 2003, pp. 251–260. doi:https://doi.org/10.1115/1.1569509 JEPAE4 1043-7398 CrossrefGoogle Scholar

  • [33] Chernysheva M. A. and Maydanik Y. F., “Heat and Mass Transfer in Evaporator of Loop Heat Pipe,” Journal of Thermophysics and Heat Transfer, Vol. 23, No. 4, 2009, pp. 725–731. doi:https://doi.org/10.2514/1.43244 JTHTEO 0887-8722 LinkGoogle Scholar

  • [34] Hanlon M. A. and Ma H. B., “Evaporation Heat Transfer in Sintered Porous Media,” Journal of Heat Transfer, Vol. 125, No. 4, 2003, pp. 644–652. doi:https://doi.org/10.1115/1.1560145 JHTRAO 0022-1481 CrossrefGoogle Scholar

  • [35] Mishkinis D., Ochterbeck J. M., Sodtke C., Ku J. and Butler D., “Non-Dimensional Analysis and Scaling Isuues in Loop Heat Pipes,” AIAA Paper  2003-341, 2003. Google Scholar

  • [36] Kaya T. and Hoang T. T., “Mathematical Modelling of Loop Heat Pipes and Experimental Validation,” Journal of Thermophysics and Heat Transfer, Vol. 13, No. 3, 1999, pp. 314–320. doi:https://doi.org/10.2514/2.6461 JTHTEO 0887-8722 LinkGoogle Scholar

  • [37] Adoni A. A., Ambirajan A., Jasvanth V. S., Kumar D., Dutta P. and Srinivasan K., “Thermohydraulic Modeling of Capillary Pumped Loop and Loop Heat Pipe,” Journal of Thermophysics and Heat Transfer, Vol. 21, No. 2, 2007, pp. 410–421. doi:https://doi.org/10.2514/1.26222 JTHTEO 0887-8722 LinkGoogle Scholar

  • [38] Launay S., Sartre V. and Bonjour J., “Selection Criteria for Fluidic and Geometrical Parameters of an LHP-based on an Analytical Approach,” Proceedings of the 15th International Heat Pipe Conference, Clemson, SC, April 2010. Google Scholar

  • [39] Kamatoni Y., “Evaporator Film Coefficients of Grooved Heat Pipes,” Proceedings of the 3rd International Heat Pipe Conference, Palo Alto, CA, May 1978, pp. 128–130. Google Scholar

  • [40] Faghri A., Heat Pipe Science and Technology, Taylor and Francis, Washington, D.C., 1995, pp. 71–75, 81–87, 822. Google Scholar

  • [41] Piskunov N., Differential and Integral Calculus, Vol. 1, Mir Publisher, Moscow, 1981, pp. 204–206. Google Scholar

  • [42] Israelachvili J. N., Intermolecular and Surface Forces, 5th ed., Academic Press, London, 1995, pp. 176–194. Google Scholar

  • [43] Adamson A. W., Physical Chemistry of Surfaces, 4th ed., Wiley-Interscience, New York, 1982, pp. 53, 238–240, 266. Google Scholar

  • [44] Schrage R. W., A Theoretical Study of Interphase Mass Transfer, Columbia Univ. Press, New York, 1953, pp. 34–36. Google Scholar

  • [45] Carey V. P., Liquid–Vapor Phase–Change phenomena, Hemisphere, New York, 1992, pp. 112–120. Google Scholar

  • [46] DasGupta S., Kim I. Y. and Wayner P. C.,, “Use of the Kelvin-Clapeyron Equation to Model an Evaporating Curved Microfilm,” Journal of Heat Transfer, Vol. 116, No. 4, 1994, pp. 1007–1015. doi:https://doi.org/10.1115/1.2911436 JHTRAO 0022-1481 CrossrefGoogle Scholar

  • [47] Bertossi R., Lataoui Z., Ayel V., Romestant C. and Bertin Y., “Modelling of Thin Liquid Film in Grooved Heat Pipes,” Numerical Heat Transfer, Part A, Vol. 55, No. 12, 2009, pp. 1075–1095. doi:https://doi.org/10.1080/10407780903014228 NHAAES 1040-7782 CrossrefGoogle Scholar

  • [48] Reference Fluid Thermodynamic, and Transport Properties (REFPROP),” NIST Standard Reference Database, 23, Version 7.0, 2007. Google Scholar

  • [49] Troung J. G. and Wayner P. C.,, “Effect of Capillary and van der Waals Dispersion Forces on the Equilibrium Profile of a Wetting Fluid: Theory and Experiment,” Journal of Chemical Physics, Vol. 87, No. 1, 1987, pp. 4180–4188. doi:https://doi.org/10.1063/1.452922 JCPSA6 0021-9606 CrossrefGoogle Scholar

  • [50] Wee S. K., “Microscale Observables for Heat and Mass Transport in Sub-Micron Scale Evaporating Thin Film,” Ph.D. Dissertation, Texas A&M Univ., College Station, TX, 2004. Google Scholar

  • [51] Schonberg J. A. and Wayner P. C.,, “Analytical Solution for the Integral Contact Line Evaporation Heat Sink,” AIAA Paper  1990-1787, 1990. LinkGoogle Scholar