Skip to main content

IMPORTANT NOTICE: The ARC website is being updated on Tuesday, May 28, 2024. ARC will be in a "Read Only" mode. Viewing and downloading content will be available but other functions are restricted. For further inquiries, please contact [email protected].

Skip to article control options
No AccessFull-Length Paper

Transonic Turbine-Vane Film Cooling with Showerhead Effect Using Pressure-Sensitive Paint Measurement Technique

Published Online:https://doi.org/10.2514/1.T5230

This work focuses on the parametric experimental study of film cooling effectiveness on the suction side of a scaled turbine vane. The experiments are performed in a five-vane annular sector cascade blowdown facility. The controlled exit Mach numbers are 0.7, 0.9, and 1.1, from high subsonic to transonic conditions. Nitrogen, carbon dioxide, and an argon/sulfur hexafluoride mixture are used to investigate the effects of density ratios, from 1.0, 1.5 to 2.0. Three row-averaged blowing ratios in the range of 0.7, 1.0, and 1.6 are studied. The test vane includes three rows of radial-angle cylindrical holes around the leading edge and two rows of compound-angle-shaped holes on the suction side. A pressure-sensitive paint technique is used to obtain the film cooling effectiveness distributions from suction-side holes and the contribution from leading-edge showerhead holes. This work shows the effects of the blowing ratio, density ratio, and exit Mach number on the film cooling effectiveness, as well as its interaction with a potential shock wave. The results indicate that, when the cooling holes are located in a critical region on the vane suction surface, the parametric effect on film cooling performance will significantly deviate from the common trend for a typical hole geometry.

References

  • [1] Han J. C., “Fundamental Gas Turbine Heat Transfer,” Journal of Thermal Science and Engineering Applications, Vol. 5, No. 2, 2013, Paper 021007. doi:https://doi.org/10.1115/1.4023826 CrossrefGoogle Scholar

  • [2] Liess C., “Experimental Investigation of Film Cooling with Ejection from a Row of Holes for the Application to Gas Turbine Blades,” Journal of Engineering for Gas Turbines and Power, Vol. 97, No. 1, 1975, pp. 21–27. doi:https://doi.org/10.1115/1.3445904 JETPEZ 0742-4795 CrossrefGoogle Scholar

  • [3] Gritsch M., Schulz A. and Wittig S., “Adiabatic Wall Effectiveness Measurements of Film-Cooling Holes with Expanded Exits,” Journal of Turbomachinery, Vol. 120, No. 3, 1998, pp. 549–556. doi:https://doi.org/10.1115/1.2841752 JOTUEI 0889-504X CrossrefGoogle Scholar

  • [4] Lutum E., von Wolfersdorf J., Semmler K., Naik S. and Weigand B., “Film Cooling on a Convex Surface: Influence of External Pressure Gradient and Mach Number on Film Cooling Performance,” Heat and Mass Transfer, Vol. 38, No. 1, 2001, pp. 7–16. doi:https://doi.org/10.1007/s002310000149 0947-7411 CrossrefGoogle Scholar

  • [5] Ochs M., Schulz A. and Bauer H.-J., “Investigation of the Influence of Trailing Edge Shock Waves on Film Cooling Performance of Gas Turbine Airfoils,” Proceedings of the ASME Turbo Expo 2007 Conference, American Soc. of Mechanical Engineers Paper  GT2007-27482, Fairfield, NJ, 2007. doi:https://doi.org/10.1115/GT2007-27482 CrossrefGoogle Scholar

  • [6] Saumweber C. and Schulz A., “Free-Stream Effects on the Cooling Performance of Cylindrical and Fan-Shaped Cooling Holes,” Journal of Turbomachinery, Vol. 134, No. 6, 2012, Paper 061007. doi:https://doi.org/10.1115/1.4006287 JOTUEI 0889-504X Google Scholar

  • [7] Xue S., Arisi A. and Ng W., “Experimental and Numerical Investigations of Shock-Film Cooling Interaction on a Turbine Blade with Fan-Shaped Cooling Holes,” Journal of Thermal Science and Engineering Applications, Vol. 7, No. 4, 2015, Paper 044502. doi:https://doi.org/10.1115/1.4031465 CrossrefGoogle Scholar

  • [8] Anderson J. B., Wilkes E. K., McClintic J. W. and Bogard D. G., “Effects of Freestream Mach Number, Reynolds Number, and Boundary Layer Thickness of Film Cooling Effectiveness of Shaped Holes,” Proceedings of the ASME Turbo Expo 2016 Conference, American Soc. of Mechanical Engineers Paper GT2016-56152, Fairfield, NJ, 2016. doi:https://doi.org/10.1115/GT2016-56152 CrossrefGoogle Scholar

  • [9] Goldstein R. J., Eckert E. R. G. and Burggraf F., “Effects of Hole Geometry and Density on Three-Dimensional Film Cooling,” International Journal of Heat and Mass Transfer, Vol. 17, No. 5, 1974, pp. 595–607. doi:https://doi.org/10.1016/0017-9310(74)90007-6 IJHMAK 0017-9310 CrossrefGoogle Scholar

  • [10] Pedersen D. R., Eckert E. R. G. and Goldstein R. J., “Film Cooling with Large Density Differences Between the Mainstream and the Secondary Fluid Measured by the Heat-Mass Transfer Analogy,” Journal of Heat Transfer, Vol. 99, No. 4, 1977, pp. 620–627. doi:https://doi.org/10.1115/1.3450752 JHTRAO 0022-1481 CrossrefGoogle Scholar

  • [11] Sinha A. K., Bogard D. G. and Crawford M. E., “Film-Cooling Effectiveness Downstream of a Single Row of Holes with Variable Density Ratio,” Journal of Turbomachinery, Vol. 113, No. 3, 1991, pp. 442–449. doi:https://doi.org/10.1115/1.2927894 JOTUEI 0889-504X CrossrefGoogle Scholar

  • [12] Gritsch M., Colban W., Schär H. and Döbbeling K., “Effect of Hole Geometry on the Thermal Performance of Fan-Shaped Film Cooling Holes,” Journal of Turbomachinery, Vol. 127, No. 4, 2005, pp. 718–725. doi:https://doi.org/10.1115/1.2019315 JOTUEI 0889-504X CrossrefGoogle Scholar

  • [13] Wright L. M., McCain S. T. and Clemenson M. D., “Effect of Density Ratio on Flat Plate Film Cooling with Shaped Holes Using PSP,” Journal of Turbomachinery, Vol. 133, No. 4, 2011, Paper 041011. doi:https://doi.org/10.1115/1.4002988 JOTUEI 0889-504X CrossrefGoogle Scholar

  • [14] Chen A. F., Li S. J. and Han J. C., “Film Cooling for Cylindrical and Fan-Shaped Holes Using Pressure-Sensitive Paint Measurement Technique,” Journal of Thermophysics and Heat Transfer, Vol. 29, No. 4, 2015, pp. 775–784. doi:https://doi.org/10.2514/1.T4518 JTHTEO 0887-8722 LinkGoogle Scholar

  • [15] Vinton K. R., Watson T. B., Wright L. M., Crites D. C., Morris M. C. and Riahi A., “Combined Effects of Freestream Pressure Gradient and Density Ratio on the Film Cooling Effectiveness of Round and Shaped Holes on a Flat Plate,” Proceedings of ASME Turbo Expo 2016 Conference, American Soc. of Mechanical Engineers Paper GT2016-56210, Fairfield, NJ, 2016. doi:https://doi.org/10.1115/GT2016-56210 CrossrefGoogle Scholar

  • [16] Colban W., Gratton A., Thole K. A. and Haendler M., “Heat Transfer and Film-Cooling Measurements on a Stator Vane with Fan-Shaped Cooling Holes,” Journal of Turbomachinery, Vol. 128, No. 1, 2005, pp. 53–61. doi:https://doi.org/10.1115/1.2098789 JOTUEI 0889-504X CrossrefGoogle Scholar

  • [17] Najafabadi H. N., Karlsson M., Kinell M. and Utriainen E., “Film-Cooling Performance of a Turbine Vane Suction Side: The Showerhead Effect on Film-Cooling Hole Placement for Cylindrical and Fan-Shaped Holes,” Journal of Turbomachinery, Vol. 137, No. 9, 2015, Paper 091005. doi:https://doi.org/10.1115/1.4029966 JOTUEI 0889-504X CrossrefGoogle Scholar

  • [18] Najafabadi H. N., Karlsson M., Utriainen E., Kinell M. and Wang L., “Film-Cooling Performance of Multiple Arrays of Cylindrical and Fan-Shaped Holes,” Journal of Propulsion and Power, Vol. 31, No. 6, 2015, pp. 1621–1630. doi:https://doi.org/10.2514/1.B35618 JPPOEL 0748-4658 LinkGoogle Scholar

  • [19] Liu K., Narzary D. P., Han J. C., Mirzamoghadam A. V. and Riahi A., “Influence of Shock Wave on Turbine Vane Suction Side Film Cooling with Compound-Angle Shaped Holes,” Proceedings of the ASME Turbo Expo 2011 Conference, American Soc. of Mechanical Engineers Paper GT2011-45927, Fairfield, NJ, 2011. doi:https://doi.org/10.1115/GT2011-45927 CrossrefGoogle Scholar

  • [20] Yang S. F., Han J. C., Mirzamoghadam A. V. and Riahi A., “Film Cooling Effectiveness of Transonic Turbine Vane Suction Side with Compound-Angle Shaped Hole Configuration,” Proceedings of the ASME Turbo Expo 2015 Conference, American Soc. of Mechanical Engineers Paper GT2015-42184, Fairfield, NJ, 2015. doi:https://doi.org/10.1115/GT2015-42184 CrossrefGoogle Scholar

  • [21] Shiau C. C., Chowdhury N. H. K., Yang S. F., Han J. C., Mirzamoghadam A. V. and Riahi A., “Heat Transfer Coefficients and Film Cooling Effectiveness of Transonic Turbine Vane Suction Surface Using TSP Technique,” Proceedings of the ASME Turbo Expo 2016 Conference, American Soc. of Mechanical Engineers Paper GT2016-56264, Fairfield, NJ, 2016. doi:https://doi.org/10.1115/GT2016-56264 CrossrefGoogle Scholar

  • [22] Baines W. D. and Peterson E. G., “An Investigation of Flow Through Screens,” Transactions of the ASME, Vol. 73, 1951, pp. 467–480. TASMAV 0097-6822 Google Scholar

  • [23] Häring M. and Weigand B., “A New Analogy Function for the Naphthalene Sublimation Technique to Measure Heat Transfer Coefficients on Turbine Airfoils,” Proceedings of the ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition, American Soc. of Mechanical Engineers Paper 95-GT-017, Fairfield, NJ, 1995. doi:https://doi.org/10.1115/95-GT-017 CrossrefGoogle Scholar

  • [24] Häring M., Hoffs A., Bolcs A. and Weigand B., “An Experimental Study to Compare the Naphthalene Sublimation with the Liquid Crystal Technique in Compressible Flow,” Proceedings of the ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition, American Soc. of Mechanical Engineers Paper 95-GT-016, Fairfield, NJ, 1995. doi:https://doi.org/10.1115/95-GT-016 CrossrefGoogle Scholar

  • [25] Wright L. M., Gao Z., Varvel T. A. and Han J. C., “Assessment of Steady State PSP, TSP, and IR Measurement Techniques for Flat Plate Film Cooling,” Proceedings of the ASME 2005 Summer Heat Transfer Conference, American Soc. of Mechanical Engineers Paper HT2005-72363, Fairfield, NJ, 2005. doi:https://doi.org/10.1115/HT2005-72363 CrossrefGoogle Scholar

  • [26] Wiese C. J., Rutledge J. L. and Polanka M. D., “Experimental Evaluation of Thermal and Mass Transfer Techniques to Measure Adiabatic Effectiveness with Various Coolant to Freestream Property Ratios,” Proceedings of the ASME Turbo Expo 2017 Conference, American Soc. of Mechanical Engineers Paper GT2017-65019, Fairfield, NJ, 2017. doi:https://doi.org/10.1115/GT2017-65019 CrossrefGoogle Scholar

  • [27] Jones T. V., “Theory for the Use of Foreign Gas in Simulating Film Cooling,” International Journal of Heat and Fluid Flow, Vol. 20, No. 3, 1999, pp. 349–354. doi:https://doi.org/10.1016/S0142-727X(99)00017-X IJHFD2 0142-727X CrossrefGoogle Scholar

  • [28] Shiau C. C., Chen A. F., Han J. C., Azad S. and Lee C. P., “Full-Scale Turbine Vane Endwall Film-Cooling Effectiveness Distribution Using Pressure-Sensitive Paint Technique,” Journal of Turbomachinery, Vol. 138, No. 5, 2016, Paper 051002. doi:https://doi.org/10.1115/1.4032166 JOTUEI 0889-504X CrossrefGoogle Scholar

  • [29] Han J. C. and Rallabandi A. P., “Turbine Blade Film Cooling Using PSP Technique,” Frontiers in Heat and Mass Transfer, Vol. 1, No. 1, 2010, Paper 013001. doi:https://doi.org/10.5098/hmt.v1.1.3001 CrossrefGoogle Scholar

  • [30] Kline S. J. and McClintock F. A., “Describing Uncertainties in Single-Sample Experiments,” Mechanical Engineering), Vol. 75, 1953, pp. 3–8. MEENAH 0025-6501 Google Scholar