Skip to main content
Skip to article control options
No AccessFull-Length Papers

Assessment of Shear Stress Transport Model with Its Variant for Heat Transfer Problems

Published Online:

Merits of shear-stress transport and its wall-distance-free variant are evaluated by accommodating comparisons with direct numerical simulation and experimental data for heat and fluid flow problems. To improve the temperature field predictions in turbulent boundary layers and around the stagnation region accompanied by flow separation and reattachment, the thermal eddy diffusivity is approximated via the turbulent eddy viscosity using a variable turbulent Prandtl number Prt. A new eddy-viscosity bound that responds to both rotational and irrotational strains to better predict nonequilibrium flows is incorporated. Results show substantial improvement by both models (shear-stress-transport and wall-distance-free shear-stress transport) and demonstrate the efficacy to predict heat transfer problems with consistency and commendable accuracy. Unlike the original shear-stress-transport model, the wall-distance-free version of the shear-stress-transport model requires no wall function/distance parameter to bridge the near-wall integration. Both models produce almost identical results and are applicable to flows with an anisotropic Prt, having much higher generality than the traditional constant Prandtl number models. The current approach serves as a guidance to improve heat transfer characteristics of an isotropic or simple gradient-type heat flux model in the wall vicinity and boundary layers.


  • [1] Incropera F. P. and DeWitt D. P., Introduction to Heat Transfer, 1st ed., Wiley, New York, 1985. Google Scholar

  • [2] Kays W. M. and Crawford M., Convective Heat and Mass Transfer, 3rd ed., McGraw-Hill Education, 1993. Google Scholar

  • [3] Kader B. A. and Yaglom A. M., “Heat and Mass Transfer Laws for Fully Turbulent Wall Flows,” International Journal of Heat and Mass Transfer, Vol. 15, No. 12, 1972, pp. 2329–2351. Google Scholar

  • [4] Thakre S. S. and Joshi J. B., “CFD Modeling of Heat Transfer in Turbulent Pipe Flows,” American Institute of Chemical Engineers Journal, Vol. 46, No. 9, 2000, pp. 1798–1812. CrossrefGoogle Scholar

  • [5] Nakaharai H., Takeuchi J., Yokomine T., Kunugi T., Satake S., Morley N. B. and Abdou M. A., “The Influence of a Magnetic Field on Turbulent Heat Transfer of a High Prandtl Number Fluid,” Experimental Thermal and Fluid Science, Vol. 32, No. 1, 2007, pp. 23–28. CrossrefGoogle Scholar

  • [6] Reynolds W. C., Kays W. M. and Kline S. J., “Heat Transfer in the Turbulent Incompressible Boundary Layer,” NASA TM-12-1-58 W, 1958. Google Scholar

  • [7] Gibson M. M. and Verriopoulos C. A., “Turbulent Boundary Layer on a Mildly Curved Convex Surface: Part 2, Temperature Field Measurements,” Experiment in Fluids, Vol. 2, No. 2, 1984, pp. 73–80. CrossrefGoogle Scholar

  • [8] Krishnamoorthy L. V. and Antonia R. A., “Temperature Dissipation Measurements in a Turbulent Boundary Layer,” Journal of Fluid Mechanics, Vol. 176, March 1987, pp. 265–281. CrossrefGoogle Scholar

  • [9] Antonia R. A., “Behavior of the Turbulent Prandtl Number Near the Wall,” International Journal of Heat and Mass Transfer, Vol. 23, No. 6, 1980, pp. 906–908. CrossrefGoogle Scholar

  • [10] Kasagi N., Tomita Y. and Kuroda A., “Direct Numerical Simulation of Passive Scalar Field in a Turbulent Channel Flow,” Journal of Heat Transfer, Vol. 114, No. 3, 1992, pp. 598–606. CrossrefGoogle Scholar

  • [11] Kawamura H., Abe H. and Matsuo Y., “DNS of Turbulent Heat Transfer in Channel Flow with Respect to Reynolds and Prandtl Number Effect,” International Journal of Heat and Fluid Flow, Vol. 20, No. 3, 1999, pp. 196–207. CrossrefGoogle Scholar

  • [12] Abe H. and Kawamura H., “DNS of Turbulent Heat Transfer in a Channel Flow up to Reτ=640 (with Respect to Reynolds and Prandtl Number Effects),” Transactions of the Japan Society of Mechanical Engineers, Series B, Vol. 69, No. 686, 2003, pp. 2291–2298 (in Japanese). CrossrefGoogle Scholar

  • [13] Cazalbou J. B. and Bradshaw P., “Turbulent Transport in Wall-Bounded Flows, Evaluation of Model Coefficients Using Direct Numerical Simulation,” Physics of Fluids A, Vol. 5, No. 12, 1993, pp. 3233–3239. CrossrefGoogle Scholar

  • [14] Jones W. P. and Launder B. E., “The Calculation of Low-Reynolds Number Phenomena with a Two-Equation Model of Turbulence,” International Journal of Heat and Mass Transfer, Vol. 16, No. 6, 1973, pp. 1119–1130. CrossrefGoogle Scholar

  • [15] Kays W. M., “Turbulent Prandtl Number- Where are We?Journal of Heat Transfer, Vol. 116, No. 2, 1994, pp. 284–295. CrossrefGoogle Scholar

  • [16] Argyropoulos C. D. and Markatos N. C., “Recent Advances on the Numerical Modelling of Turbulent Flows,” Applied Mathematical Modelling, Vol. 39, No. 2, 2015, pp. 693–732. CrossrefGoogle Scholar

  • [17] Chaouat B., “The State of the Art of Hybrid RANS/LES Modeling for the Simulation of Turbulent Flows,” Flow, Turbulence and Combustion, Vol. 99, No. 2, 2017, pp. 279–327. CrossrefGoogle Scholar

  • [18] Park T. S. and Sung H. J., “A New Low-Reynolds Number k-ϵ-fμ Model for Predictions Involving Multiple Surface,” Fluid Dynamics Research, Vol. 20, Nos. 1–6, 1997, pp. 97–113. CrossrefGoogle Scholar

  • [19] Goldberg U. and Apsley D., “A Wall-Distance-Free Low RE k-ϵ Turbulence Model,” Computer Methods in Applied Mechanics and Engineering, Vol. 145, Nos. 3–4, 1997, pp. 227–238. CrossrefGoogle Scholar

  • [20] Rahman M. M., Agarwal R. K., Lampinen M. J. and Siikonen T., “Wall-Distance-Free Version of Spalart–Allmaras Turbulence Model,” AIAA Journal, Vol. 53, No. 10, 2015, pp. 3016–3027. LinkGoogle Scholar

  • [21] Rahman M. M., Vuorinen V, Taghinia J. and Larmi M., “Wall-Distance-Free Formulation for SST kω Model,” European Journal of Mechanics/B Fluids, Vol. 75, May 2019, pp. 71–82. CrossrefGoogle Scholar

  • [22] Menter F. R., “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications,” AIAA Journal, Vol. 32, No. 8, 1994, pp. 1598–1605. LinkGoogle Scholar

  • [23] Gharbi N. E., Blanchard R., Absi R., Benzaoui A. and Ganaoui M. E., “Near-Wall Models for Improved Heat Transfer Predictions in Channel Flow Applications,” Journal of Thermophysics and Heat Transfer, Vol. 29, No. 4, 2015, pp. 732–736. Google Scholar

  • [24] Shirvan K. M., Ellahi R., Mirzakhanlari S. and Mamourian M., “Enhancement of Heat Transfer and Heat Exchanger Effectiveness in a Double Pipe Heat Exchanger Filled with Porous Media: Numerical Simulation and Sensitivity Analysis of Turbulent Fluid Flow,” Applied Thermal Engineering, Vol. 109, Oct. 2016, pp. 761–774. Google Scholar

  • [25] Akbarzadeh M., Rashidi S., Karimi N. and Ellahi R., “Convection of Heat and Thermodynamic Irreversibilities in Two-Phase, Turbulent Nanofluid Flows in Solar Heaters by Corrugated Absorber Plates,” Advanced Powder Technology, Vol. 29, No. 9, 2018, pp. 2243–2254. CrossrefGoogle Scholar

  • [26] Hasan M., Marin M., Alsharif A. and Ellahi R., “Convection Heat Transfer Flow of Nanofluid in a Porous Medium over Wavy Surface,” Physics Letters A, Vol. 382, No. 38, 2018, pp. 2749–2753. Google Scholar

  • [27] Hasan M., Marin M., Ellahi R. and Alamri S. Z., “Exploration of Convective Heat Transfer and Flow Characteristics Synthesis by Cu-Ag/Water Hybrid-Nanofluids,” Heat Transfer Research, Vol. 49, No. 18, 2018, pp. 1837–1848. Google Scholar

  • [28] Menter F. R., Kuntz M. and Langtry R., “Ten Years of Industrial Experience with the SST Turbulence Model,” Turbulence, Heat and Mass Transfer, edited by Hanjalic K., Nagana Y. and Tummers M., Vol. 4, Begell House, New York, 2003, pp. 625–632. Google Scholar

  • [29] Bangga G., Kusumadewi T., Hutomo G., Sabila A., Syawitri T., Setiadi H., Faisal M., Wiranegara R., Hendranata Y. and Lastomo al., “Improving a Two-Equation Eddy-Viscosity Turbulence Model to Predict the Aerodynamic Performance of Thick Wind Turbine Airfoils,” Journal of Physics: Conference Series, Vol. 974, No. 1, 2018, pp. 1–22. Google Scholar

  • [30] Lumley J. L., “Computational Modeling of Turbulent Flows,” Advances in Applied Mechanics, Vol. 18, Elsevier, New York, 1978, pp. 123–176. Google Scholar

  • [31] Rahman M. M. and Siikonen T., “An Explicit Algebraic Reynolds Stress Model in Turbulence,” International Journal for Numerical Methods in Fluids, Vol. 52, No. 10, 2006, pp. 1135–1157. CrossrefGoogle Scholar

  • [32] Patel V. C., Rodi W. and Scheuerer G., “Turbulence Models for Near-Wall and Low Reynolds Number Flow, A Review,” AIAA Journal, Vol. 23, No. 9, 1985, pp. 1308–1319. LinkGoogle Scholar

  • [33] Rahman M. M., Rautaheimo P. and Siikonen T., “Numerical Study of Turbulent Heat Transfer from a Confined Impinging Jet Using a Pseudo-Compressibility Method,” Second International Symposium on Turbulence, Heat and Mass Transfer, edited by Hanjalic K. and Peeters T. W. J., Delft Univ., Delft, The Netherlands, 1997, pp. 511–520. Google Scholar

  • [34] Rahman M. M. and Siikonen T., “An Artificial Compressibility Method for Incompressible Flows,” Numerical Heat Transfer, Part B, Vol. 40, No. 5, 2001, pp. 391–409. Google Scholar

  • [35] Rahman M. M. and Siikonen T., “A Dual-Dissipation Scheme for Pressure-Velocity Coupling,” Numerical Heat Transfer, Part B, Vol. 42, No. 3, 2002, pp. 231–242. Google Scholar

  • [36] Rahman M. M. and Siikonen T., “An Artificial Compressibility Method for Viscous Incompressible and Low Mach Number Flows,” International Journal of Numerical Methods in Engineering, Vol. 75, No. 11, 2008, pp. 1320–1340. CrossrefGoogle Scholar

  • [37] Roe P. L., “Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes,” Journal of Computational Physics, Vol. 43, No. 2, 1981, pp. 357–372. CrossrefGoogle Scholar

  • [38] Lombard C., Bardina J., Venkatapathy E. and Oliger J., “Multi-Dimensional Formulation of CSCM - An Upwind Flux Difference Eigenvector Split Method for the Compressible Navier-Stokes Equations,” 6th AIAA Computational Fluid Dynamics Conference, AIAA Paper  1983-1895-CP, 1983. LinkGoogle Scholar

  • [39] Jameson A. and Yoon S., “Multigrid Solution of the Euler Equations Using Implicit Schemes,” AIAA Journal, Vol. 24, No. 11, 1986, pp. 1737–1743. LinkGoogle Scholar

  • [40] Rahman M. M., Miettinen A. and Siikonen T., “Modified SIMPLE Formulation on a Collocated Grid with an Assessment of the Simplified QUICK Scheme,” Numerical Heat Transfer, Part B, Vol. 30, No. 3, 1996, pp. 291–314. Google Scholar

  • [41] Rahman M. M., Siikonen T. and Miettinen A., “A Pressure-Correction Method for Solving Fluid Flow Problems on a Collocated Grid,” Numerical Heat Transfer, Part B, Vol. 32, No. 1, 1997, pp. 63–84. Google Scholar

  • [42] Bricteux L., Duponcheel M., Manconi M. and Bartosiewicz Y., “Numerical Prediction of Turbulent Heat Transfer at Low Prandtl Number,” Journal of Physics: Conference Series, Vol. 395, No. 1, 2012, pp. 1–9. Google Scholar

  • [43] Kader B. A., “Temperature and Concentration Profiles in Fully Turbulent Boundary Layers,” International Journal of Heat and Mass Transfer, Vol. 24, No. 9, 1981, pp. 1541–1544. CrossrefGoogle Scholar

  • [44] Ichimiya K. and Hosaka N., “Experimental Study of Heat Transfer Characteristics due to Confined Impinging Two-Dimensional Jets (Heat Transfer Experiment for Three Slot Jets),” Transactions of the Japan Society of Mechanical Engineers Part B, Vol. 55, No. 518, 1989, pp. 3210–3215. Google Scholar