Skip to main content
Skip to article control options
No AccessFull-Length Papers

Reduced-Order Computational-Fluid-Dynamics-Based Analysis of Aviation Heat Exchangers

Published Online:https://doi.org/10.2514/1.T5903

The goal envisioned for the Reduced-Order Computational Fluid Dynamics and Heat Transfer (ROM-CFDHT) procedure is obtaining fast turnaround in simulation time so that computational fluid dynamics can form a component of a system-level design tool. To accomplish this, a set of finite-element schemes is proposed, including the choice of the quadratic interpolation functions, the penalty approach, an intelligent error-control capability, a continuation method, a restart procedure that restores the integrity of the error-control scheme when the procedure encounters difficulties, and the consistent flux method. It is shown that for a natural convection problem simulation using fewer than 20 elements produces Nusselt number Nu results that agree with models using thousands of elements, with simulation time in seconds rather than hours. Forced convection over an asymmetrically laidout bank of tubes is simulated as another test of the proposed procedure. Three values of the Reynolds number, Re=10, 100, 1000 are investigated using two grids with significantly different levels of resolution and quality. The local distributions of Nu show some differences between the grids, but the mean results are comparable. The coarse grid could not calculate the Re=1000 case due to poor resolution and grid quality. A combination of grid resolution and choice of schemes enables successful simulation.

References

  • [1] Kays W. M. and London A. L., Compact Heat Exchangers, 3rd ed., McGraw–Hill, New York, 1984, pp. 1–347. Google Scholar

  • [2] Kakac S., Bergles A. E. and Mayinger F. (eds.), Heat Exchangers Thermal-Hydraulic Fundamentals and Design, Taylor and Francis, Abingdon, U.K., 1981, pp. 1–1131. Google Scholar

  • [3] Hewitt G. F., Shires G. L. and Bott T. R., Process Heat Transfer, 1st ed., CRC Press, Boca Raton, FL, 1994, pp. 1–1016. Google Scholar

  • [4] Hewitt G. F. (ed.), “Heat Exchanger Design Handbook 1998,” Part 1: Heat Exchanger Theory, Part 2: Fluid Mechanics and Heat Transfer, Begell House, New York, 1998, pp. 1–700. Google Scholar

  • [5] Shah R. K. and Sekulic D. P., Fundamentals of Heat Exchanger Design, 1st ed., Wiley, Hoboken, NJ, 2003, pp. 1–941. Google Scholar

  • [6] Palen J. W., Heat Exchanger Sourcebook, 1st ed., Hemisphere, New York, 1986, pp. 1–805. Google Scholar

  • [7] Qasem N. A. and Zubair S. M., “Compact and Microchannel Heat Exchangers: A Comprehensive Review of Air-Side Friction Factor and Heat Transfer Correlations,” Energy Conversion and Management, Vol. 173, Oct. 2018, pp. 555–601. https://doi.org/10.1016/j.enconman.2018.06.104 CrossrefGoogle Scholar

  • [8] Li Q., Flamant G., Yuan X., Neveu P. and Luo L., “Comact Heat Engineers: A Review and Future Applications for a New Generation of High Temperature Solar Receivers,” Renewable and Sustainable Energy Reviews, Vol. 15, No. 9, 2011, pp. 4855–4875. https://doi.org/10.1016/j.rser.2011.07.066 Google Scholar

  • [9] Shirvan K. M., Mamourian M., Mirzakhanlari S. and Ellahi R., “Numerical Investigation of Heat Exchanger Effectiveness in a Double Pipe Heat Exchanger Filled with Nanofluid: A Sensitivity Analysis by Response Surface Methodology,” Power Technology, Vol. 313, May 2017, pp. 99–111. https://doi.org/10.1016/j.powtec.2017.02.065 Google Scholar

  • [10] Esfahani J. A., Akbarzadeh M., Rashidi S., Rosen M. A. and Elahi R., “Influences of Wavy Wall and Nanoparticles on Entropy Generation over Heat Exchanger Plate,” International Journal of Heat and Mass Transfer, Vol. 109, June 2017, pp. 1162–1171. https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.006 Google Scholar

  • [11] Shirvan K. M., Ellahi R., Mirzakhanlari S. and Mamourian M., “Enhancement of Heat Transfer and Heat Exchanger Effectiveness in a Double Pipe Heat Exchanger Filled with Porous Media: Numerical Simulation and Sensitivity Analysis of Turbulent Fluid Flow,” Applied Thermal Engineering, Vol. 109, Oct. 2016, pp. 761–774. https://doi.org/10.1016/j.applthermaleng.2016.08.116 Google Scholar

  • [12] Shirvan K. M., Mamourian M., Mirzakhanlari S., Rahimi A. B. and Ellahi R., “Numerical Study of Surface Radiation and Combined Natural Convection Heat Transfer in a Solar Cavity Receiver,” International Journal of Numerical Methods for Heat and Fluid Flow, Vol. 27, No. 10, 2017, pp. 2385–2399. https://doi.org/10.1108/HFF-10-2016-0419 CrossrefGoogle Scholar

  • [13] Akbarzadeh M., Rashidi S., Karimi N. and Ellahi R., “Convection of Heat and Thermodynamic Irreversibilities in Two-Phase, Turbulent Nanofluid Flows in Solar Heaters by Corrugated Absorber Plates,” Advanced Powder Technology, Vol. 29, No. 9, 2018, pp. 2243–2254. https://doi.org/10.1016/j.apt.2018.06.009 CrossrefGoogle Scholar

  • [14] Ladeinde F., Alabi K. and Li W., “Optimization and Database Management in Smart Modeling of Aviation Heat Exchangers,” Journal of Thermophysics and Heat Transfer, Vol. 33, No. 4, Oct. 2019, pp. 1142–1152. https://doi.org/10.2514/1.T5733 LinkGoogle Scholar

  • [15] Ladeinde F., Alabi K. and Li W., “Optimization of Heat Exchange in Manifold-Microchannel Groves,” Journal of Heat Transfer, Vol. 140, No. 9, Sept. 2018, Paper 092403. https://doi.org/10.1115/1.4040141 CrossrefGoogle Scholar

  • [16] Lestina T. and Scott B., “Assessing the Uncertainly of Thermal Performance Measurements of Industrial Heat Exchangers, Compact Heat Exchangers for the Process Industries,” edited by Shah R. K., Begell House, Inc., New York, 1997, pp. 401–416. Google Scholar

  • [17] Ladeinde F., Alabi K. and Li W., “Reduced-Order CFD-Based Multi-Rating of Aviation Heat Exchangers,” 2019 AIAA SciTech Conference, Aerospace Sciences Conference, AIAA Paper 2019-1560, Jan. 2019. https://doi.org/10.2514/6.2019-1560 Google Scholar

  • [18] Ladeinde F., “New Results from Reduced-Order CFD-Based Multi-Rating of Aviation Heat Exchangers,” Propulsion and Energy Forum 2019, AIAA Paper 2019-4459, Aug. 2019. https://doi.org/10.2514/6.2019-4459 LinkGoogle Scholar

  • [19] Ladeinde F. and Alabi K. A., “A New Procedure for Two-Phase Analysis of Industrial Heat Exchangers,” International Journal of Heat Exchangers, Vol. 4, No. 1, 2003, pp. 71–90. Google Scholar

  • [20] Ladeinde F. and Alabi K., “A New Procedure for Two-Phase Thermal Analysis of Multi-Pass Industrial Plate-Fin Heat Exchangers,” Compact Heat Exchangers and Enhancement Technology for the Process Industries, edited by Shah R. K., Deakin A. W., Honda H. and Rudy T. M., United Engineering Foundation, New York, 2001, pp. 437–443. Google Scholar

  • [21] Kasim K., Muley A., Stoia M. and Ladeinde F., “Advanced Heat Transfer Devices for Aerospace Applications,” Proceedings of the ASME 2017 International Mechanical Engineering Congress and Exhibition IMECE17, American Soc. of Mechanical Engineers Paper  IMECE2017-72382, New York, Nov. 2017. https://doi.org/10.1115/IMECE2017-72382 Google Scholar

  • [22] Li W., Alabi K. and Ladeinde F., “Comparison of 30 Boiling and Condensation Correlations for Two-Phase Flows in Compact Plate-Fin Heat Exchangers,” American Soc. of Mechanical Engineers Paper  HT2017-4907, Proceedings of the ASME 2017 Heat Transfer Summer Conference, Bellevue, Washington, July 2017. https://doi.org/10.1115/HT2017-4907 Google Scholar

  • [23] Ladeinde F., Alabi K. and Li W., “GA-Based Optimization of Compact Plate Heat Exchangers with Manifold-Microchannel Groves,” American Soc. of Mechanical Engineers Paper  HT2017-4901, New York, July 2017. https://doi.org/10.1115/HT2017-4901 Google Scholar

  • [24] Ladeinde F., “A Procedure for Advection and Diffusion in Thin Cavities,” Journal of Computational Mechanics, Vol. 15, No. 6, 1995, pp. 511–520. https://doi.org/10.1007/BF00350264 Google Scholar

  • [25] Ladeinde F. and Akay H. U., “The Calculation of Scalar Transport During the Injection Molding of Thermoset Polymers,” Applied Mathematical Modelling, Vol. 18, No. 6, 1994, pp. 347–357. https://doi.org/10.1016/0307-904X(94)90359-X Google Scholar

  • [26] Ladeinde F., “Challenges Posed for Parallel Processing on the PSC/860 Supercomputer by DNS Schemes Computational Fluid Dnamics’92,” edited by Pelz R. B., Hainsev J. and Ecer A., Proceedings of Parallel CFG’92, Rutgers University, North Holland, Amsterdam, March 1990, p. 438. Google Scholar

  • [27] Ladeinde F., “Challenges Posed for Parallel Processing on the iPSC/860 Supercomputer by DNS Schemes of Supersonic Flows,” Parallel CFD ‘92, Rutgers, Rutgers Univ., New Brunswick, NJ, March 1992. Google Scholar

  • [28] Ladeinde F., Akay H. U. and Lynch W. C., “A New Formulation for Finite Element Simulation of Non-Isothermal Processes in Injection and Compression Molding,” ANTEC 1990, Proceedings of the 48th Society of Plastic Engineers Technical Conference, Dallas, TX, May 1990, pp. 1727–1730. Google Scholar

  • [29] Ladeinde F. and Torrance K. E., “A Finite Element Computer Code for the Analysis of Thermal Convection in Self-Gravitating and Rotating Horizontal Cylinders in a Vertical External Gravity Field,” Sibley School of Mechanical and Aerospace Engineering, Cornell Univ. Rept. E-88-03, Ithaca, NY, 1988. Google Scholar

  • [30] Ladeinde F. and Torrance K. E., “Convection in Rotating, Horizontal Cylinders with Radial and Normal Gravity Forces,” Journal of Fluid Mechanics, Vol. 228, July 1991, pp. 361–385. https://doi.org/10.1017/S0022112091002744 Google Scholar

  • [31] Ladeinde F. and Torrance K. E., “The Transient Plumes from Convective Flow Instability in Horizontal Cylinders,” Journal of Thermophysics and Heat Transfer, Vol. 4, No. 3, 1990, pp. 350–356. https://doi.org/10.2514/3.187 LinkGoogle Scholar

  • [32] Gresho P. M., Lee R. L. and Sani R. L., “On the Time-Dependent Solution of the Incompressible Navier-Stokes Equation in Two and Three Dimensions,” Recent Advances in Numerical Methods in Fluids, edited by Taylor C. and Morgan K., Vol. 1, Pineridge, Swansea, Wales, U.K., 1980, p. 260. Google Scholar

  • [33] Gresho P. M., “Contribution to von Karman Institute Lecture Series on Computational Fluid Dynamics: Advection-Diffusion and Navier-Stokes Equations,” Lawrence Livermore Lab. Rept. 92275, Livermore, CA, 1985. Google Scholar

  • [34] Sani R. L., Eaton B. E., Gresho P. M., Lee R. L., Chan S. T. and Griffiths D. F., “On the Solution of the Time-Dependent Incompressible Navier-Stokes Equations via a Penalty Galerkin Finite Element Method,” Lawrence Livermore Lab. Rept. 85354, Livermore, CA, 1981. Google Scholar

  • [35] Sani R. L., Gresho P. M., Lee R. L. and Griffiths D. F., “The Cause and Cure(?) of the Spurious Pressures generated by Certain FEM Solutions of the “Incompressible” Navier-Stokes Equations,” International Journal for Numerical Methods in Fluids, Vol. 1, No. 1, 1981, pp. 17–43 (Pt. 1), Vol. 1, No. 2, 1981, pp. 171–204 (Pt. 2).https://doi.org/10.1002/(ISSN)1097-0363 CrossrefGoogle Scholar

  • [36] Batchelor G. K., An Introduction to Fluid Dynamics, Cambridge Univ. Press, Cambridge, England, U.K., 2000, pp. 1–615. https://doi.org/10.1017/CBO9780511800955 Google Scholar

  • [37] Ladeinde F., “Studies of Thermal Convection in Self-Gravitating and Rotating Horizontal Cylinders in a Vertical External Gravity Field,” Ph.D. Thesis, Sibley School of Mechanical and Aerospace Engineering, Cornell Univ., Ithaca, NY, 1988. Google Scholar

  • [38] Huyakorn P. S., Taylor C., Lee R. L. and Gresho P. M., “A Comparison of Various Mixed-Interpolation Finite Elements in the Velocity-Pressure Formulation of the Navier-Stokes Equations,” Computers and Fluids, Vol. 6, No. 1, 1978, pp. 25–35. https://doi.org/10.1016/0045-7930(78)90004-X CrossrefGoogle Scholar

  • [39] Pope S. B., Turbulent Flows, 1st ed., Cambridge Univ. Press, New York, 2000, pp. 1–771. Google Scholar

  • [40] Ladeinde F., “Supersonic Flux-Split Procedure for Second Moments of Turbulence,” AIAA Journal, Vol. 33, No. 7, 1995, pp. 1185–1195. https://doi.org/10.2514/3.12544 LinkGoogle Scholar

  • [41] Danilov A., Lozovskiy A., Olshanskii M. A. and Vassilevski Y. V., “A Finite Element Method for the Navier-Stokes Equations in Moving Domain with Application to Hemodynamics of the Left Ventricle,” Russian Journal of Numerical Analysis and Mathematical Modelling, Vol. 32, No. 4, 2017, pp. 225–236. https://doi.org/10.1515/rnam-2017-0021 Google Scholar

  • [42] Bercovier M., Engelman M., Fortin M. and Goldberg N., “Simulations of Forming Processes by FEM with a Bingham Fluid Model,” International Journal for Numerical Methods in Fluids, Vol. 6, No. 4, 1986, pp. 197–218. https://doi.org/10.1002/(ISSN)1097-0363 Google Scholar

  • [43] Segerlind L. J., Applied Finite Element Analysis, 2nd ed., Wiley, New York, 1984, pp. 405–408. Google Scholar

  • [44] Reddy J. N., An Introduction to the Finite Element Method, McGraw–Hill, New York, 1984, pp. 303–305. Google Scholar

  • [45] Reddy J. N. and Gartling D. K., The Finite Element Method in Heat Transfer and Fluid Dynamics, CRC Press, Boca Raton, FL, 1994, pp. 69–70. Google Scholar

  • [46] Nadai A., Theory of Flow and Fracture of Solids, Vol. 2, McGraw–Hill, New York, 1963, pp. 1–705. Google Scholar

  • [47] De Vahl Davis G. and Jones I. P., “Natural Convection in a Square Cavity: A Comparison Exercise,” International Journal of Numerical Methods in Fluids, Vol. 3, No. 3, 1983, pp. 227–248. https://doi.org/10.1002/(ISSN)1097-0363 CrossrefGoogle Scholar

  • [48] Zukauskas A., “Heat Transfer from Tubes in Cross Flow,” Advances in Heat Transfer, Vol. 8, No. 1, 1972, pp. 93–160. https://doi.org/10.1016/S0065-2717(08)70038-8 CrossrefGoogle Scholar

  • [49] Incropera F. P. and DeWitt D. P., Introduction to Heat Transfer, 2nd ed., Wiley, New York, 1990, pp. 358–468. Google Scholar