Skip to main content
Skip to article control options
No AccessFull-Length Papers

Flow and Heat Transfer from Rotating Horizontal Cylinder Floating in Stationary Fluid

Published Online:https://doi.org/10.2514/1.T6617

This paper investigates the flow and heat transfer from a rotating horizontal cylinder floating in a stationary fluid. The aim is to elucidate the role of angular velocity and immersion angle on heat transfer performance and fluid behavior in the flowfield. The cylinder surface has a constant temperature of 333 K, whereas the surrounding fluids are in initial thermal equilibrium at a temperature of 293 K, and the adiabatic assumption is applied to the tank walls. The results illustrate that the rotation of the cylinder causes the formation of vortices in a fluid that has a higher contact surface with the cylinder. Also, the highest-temperature gradient is observed adjacent to the surface of the cylinder. Based on the results, the creation of a liquid film on the upper surface of the cylinder exhibits a positive dependence on the angular velocity, irrespective of the immersion angle. The film thickness decreases continuously in the direction of cylinder rotation. Furthermore, increasing the immersion angle leads to an increase in the thickness and flow of the liquid film. Scrutiny of the results indicates that increasing the angular velocity and immersion angle always improves heat transfer from the surface of the cylinder.

References

  • [1] Zdravkovich M. M., Flow Around Circular Cylinders: Volume 1: Fundamentals, Vol. 1, Oxford Univ. Press, Oxford, England, U.K., 1997. https://doi.org/10.1017/s0022112097227291 Google Scholar

  • [2] Khan W. A., Culham J. R. and Yovanovich M. M., “Fluid Flow and Heat Transfer from a Cylinder Between Parallel Planes,” Journal of Thermophysics and Heat Transfer, Vol. 18, No. 3, 2004, pp. 395–403. https://doi.org/10.2514/1.6186 LinkGoogle Scholar

  • [3] Fetecau C., Ellahi R., Khan M. and Shah N. A., “Combined Porous and Magnetic Effects on Some Fundamental Motions of Newtonian Fluids over an Infinite Plate,” Journal of Porous Media, Vol. 21, No. 7, 2018, pp. 589–605. https://doi.org/10.1615/jpormedia.v21.i7.20 Google Scholar

  • [4] Shehzad N., Zeeshan A., Shakeel M., Ellahi R. and Sait S. M., “Effects of Magnetohydrodynamics Flow on Multilayer Coatings of Newtonian and Non-Newtonian Fluids Through Porous Inclined Rotating Channel,” Coatings, Vol. 12, No. 4, 2022, p. 430. https://doi.org/10.3390/coatings12040430 Google Scholar

  • [5] Zeeshan A., Shehzad N., Atif M., Ellahi R. and Sait S. M., “Electromagnetic Flow of SWCNT/MWCNT Suspensions in Two Immiscible Water-And Engine-Oil-Based Newtonian Fluids Through Porous Media,” Symmetry, Vol. 14, No. 2, 2022, Paper 406. Google Scholar

  • [6] Tripathi D., Prakash J., Tiwari A. K. and Ellahi R., “Thermal, Microrotation, Electromagnetic Field and Nanoparticle Shape Effects on Cu-CuO/Blood Flow in Microvascular Vessels,” Microvascular Research, Vol. 132, Nov. 2020, Paper 104065. https://doi.org/10.1016/j.mvr.2020.104065 Google Scholar

  • [7] Tetsu F. and Haruo U., “Laminar Natural-Convective Heat Transfer from the Outer Surface of a Vertical Cylinder,” International Journal of Heat and Mass Transfer, Vol. 13, No. 3, 1970, pp. 607–615. https://doi.org/10.1016/0017-9310(70)90155-9 Google Scholar

  • [8] Ahmad R. A., “Steady-State Numerical Solution of the Navier-Stokes and Energy Equations Around a Horizontal Cylinder at Moderate Reynolds Numbers from 100 to 500,” Heat Transfer Engineering, Vol. 17, No. 1, 1996, pp. 31–81. https://doi.org/10.1080/01457639608939866 CrossrefGoogle Scholar

  • [9] Park H. K., Ha M. Y., Yoon H. S., Park Y. G. and Son C., “A Numerical Study on Natural Convection in an Inclined Square Enclosure with a Circular Cylinder,” International Journal of Heat and Mass Transfer, Vol. 66, Nov. 2013, pp. 295–314. https://doi.org/10.1016/j.ijheatmasstransfer.2013.07.029 CrossrefGoogle Scholar

  • [10] Zhang P., Zhang X., Deng J. and Song L., “A Numerical Study of Natural Convection in an Inclined Square Enclosure with an Elliptic Cylinder Using Variational Multiscale Element Free Galerkin Method,” International Journal of Heat and Mass Transfer, Vol. 99, Aug. 2016, pp. 721–737. https://doi.org/10.1016/j.ijheatmasstransfer.2016.04.011 Google Scholar

  • [11] Souayeh B., Ben-Cheikh N. and Ben-Beya B., “Numerical Simulation of Three-Dimensional Natural Convection in a Cubic Enclosure Induced by an Isothermally-Heated Circular Cylinder at Different Inclinations,” International Journal of Thermal Sciences, Vol. 110, Dec. 2016, pp. 325–339. https://doi.org/10.1016/j.ijthermalsci.2016.08.003 CrossrefGoogle Scholar

  • [12] Taghizadeh S. and Asaditaheri A., “Heat Transfer and Entropy Generation of Laminar Mixed Convection in an Inclined Lid Driven Enclosure with a Circular Porous Cylinder,” International Journal of Thermal Sciences, Vol. 134, Dec. 2018, pp. 242–257. https://doi.org/10.1016/j.ijthermalsci.2018.08.018 Google Scholar

  • [13] Karbasifar B., Akbari M. and Toghraie D., “Mixed Convection of Water-Aluminum Oxide Nanofluid in an Inclined Lid-Driven Cavity Containing a Hot Elliptical Centric Cylinder,” International Journal of Heat and Mass Transfer, Vol. 116, Jan. 2018, pp. 1237–1249. https://doi.org/10.1016/j.ijheatmasstransfer.2017.09.110 Google Scholar

  • [14] Hammami F., Souayeh B., Ben-Cheikh N. and Ben-Beya B., “Computational Analysis of Fluid Flow due to a Two-Sided Lid Driven Cavity with a Circular Cylinder,” Computers and Fluids, Vol. 156, Oct. 2017, pp. 317–328. https://doi.org/10.1016/j.compfluid.2017.07.017 Google Scholar

  • [15] Sedaghat M. H., Yaghoubi M. and Maghrebi M. J., “Analysis of Natural Convection Heat Transfer from a Cylinder Enclosed in a Corner of Two Adiabatic Walls,” Experimental Thermal and Fluid Science, Vol. 62, April 2015, pp. 9–20. https://doi.org/10.1016/j.expthermflusci.2014.11.003 Google Scholar

  • [16] Roy N. C., Rahman T., Hossain M. A. and Gorla R. S. R., “Boundary-Layer Characteristics of Compressible Flow Past a Heated Cylinder with Viscous Dissipation,” Journal of Thermophysics and Heat Transfer, Vol. 33, No. 1, 2019, pp. 10–22. https://doi.org/10.2514/1.t5400 LinkGoogle Scholar

  • [17] Maksimovich G. M., Araratovich S. K., Nikolaevna B. E. and Alekseevich O. A., “Gravity Orientation Effects on Convection in the Gap Between Partially Heated Cylinders,” Journal of Thermophysics and Heat Transfer, Vol. 36, No. 3, 2022, pp. 1–9. https://doi.org/10.2514/1.T6394 Google Scholar

  • [18] John B., Gu X., Barber R. and Emerson D., “High Speed Aerodynamic Characteristics of Rarefied Flow Past Stationary and Rotating Cylinders,” 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, AIAA Paper 2015-3511, 2015. https://doi.org/10.2514/6.2015-3511 Google Scholar

  • [19] John B., Gu X. J., Barber R. W. and Emerson D. R., “High-Speed Rarefied Flow past a Rotating Cylinder: The Inverse Magnus Effect,” AIAA Journal, Vol. 54, No. 5, 2016, pp. 1670–1681. https://doi.org/10.2514/1.j054782 LinkGoogle Scholar

  • [20] Fatla O. M. H., Smaism G. F., Valera-Medina A., Rageb A. M. and Syred N., “Investigation of Heat Transfer and Fluid Mechanics Across a Heated Rotating Circular Cylinder in Crossflow,” 54th AIAA Aerospace Sciences Meeting, AIAA SciTech Forum, AIAA Paper 2016-0494, 2016. https://doi.org/10.2514/6.2016-0494 Google Scholar

  • [21] Sasmal C., Gupta A. K. and Chhabra R. P., “Natural Convection Heat Transfer in a Power-Law Fluid from a Heated Rotating Cylinder in a Square Duct,” International Journal of Heat and Mass Transfer, Vol. 129, Feb. 2019, pp. 975–996. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.007 CrossrefGoogle Scholar

  • [22] Ma H., Yin L., Zhou W., Lv X., Cao Y., Shen X. and Lu W., “Measurement of the Temperature and Concentration Boundary Layers from a Horizontal Rotating Cylinder Surface,” International Journal of Heat and Mass Transfer, Vol. 87, Aug. 2015, pp. 481–490. https://doi.org/10.1016/j.ijheatmasstransfer.2015.04.035 Google Scholar

  • [23] Jamal M. and Hussain S., “Mixed Convection in Square Enclosure by Considering the Thermal Effect on Cylinder,” Journal of Thermophysics and Heat Transfer, Vol. 35, No. 4, 2021, pp. 869–882. https://doi.org/10.2514/1.T6214 LinkGoogle Scholar

  • [24] Thakur P., Tiwari N. and Chhabra R. P., “Momentum and Heat Transfer from an Asymmetrically Confined Rotating Cylinder in a Power-Law Fluid,” International Journal of Thermal Sciences, Vol. 137, March 2019, pp. 410–430. https://doi.org/10.1016/j.ijthermalsci.2018.11.034 Google Scholar

  • [25] Vella D. J. R., “The Fluid Mechanics of Floating and Sinking,” Ph.D. Dissertation, Univ. of Cambridge, Cambridge, England, U.K., 2007. Google Scholar

  • [26] Rapacchietta A. V., Neumann A. W. and Omenyi S. N., “Force and Free-Energy Analyses of Small Particles at Fluid Interfaces: I. Cylinders,” Journal of Colloid and Interface Science, Vol. 59, No. 3, 1977, pp. 541–554. https://doi.org/10.1016/0021-9797(77)90050-9 Google Scholar

  • [27] Rapacchietta A. V. and Neumann A. W., “Force and Free-Energy Analyses of Small Particles at Fluid Interfaces: II. Spheres,” Journal of Colloid and Interface Science, Vol. 59, No. 3, 1977, pp. 555–567. https://doi.org/10.1016/0021-9797(77)90051-0 Google Scholar

  • [28] Hesla T. I. and Joseph D. D., “The Maximum Contact Angle at the Rim of a Heavy Floating Disk,” Journal of Colloid and Interface Science, Vol. 279, No. 1, 2004, pp. 186–191. https://doi.org/10.1016/j.jcis.2004.06.055 Google Scholar

  • [29] Ozeren Y., Wren D. G., Altinakar M. and Work P. A., “Experimental Investigation of Cylindrical Floating Breakwater Performance with Various Mooring Configurations,” Journal of Waterway, Port, Coastal, and Ocean Engineering, Vol. 137, No. 6, 2011, pp. 300–309. https://doi.org/10.1061/(asce)ww.1943-5460.0000090 Google Scholar

  • [30] Bihs H. and Ong M. C., “Numerical Simulation of Flows Past Partially-Submerged Horizontal Circular Cylinders in Free Surface Waves,” International Conference on Offshore Mechanics and Arctic Engineering, Vol. 55416, American Soc. of Mechanical Engineers, Fairfield, VA, June 2013, p. V007T08A036. https://doi.org/10.1115/omae2013-10529 Google Scholar

  • [31] Chen B., Ning D., Liu C., Greated C. A. and Kang H., “Wave Energy Extraction by Horizontal Floating Cylinders Perpendicular to Wave Propagation,” Ocean Engineering, Vol. 121, July 2016, pp. 112–122. https://doi.org/10.1016/j.oceaneng.2016.05.016 Google Scholar

  • [32] Ageorges V., Peixinho J., Perret G., Lartigue G. and Moureau V., “Experiments and Simulations of Free-Surface Flow Behind a Finite Height Rigid Vertical Cylinder,” Fluids, Vol. 6, No. 10, 2021, Paper 367. https://doi.org/10.3390/fluids6100367 Google Scholar

  • [33] Ageorges V., Peixinho J. and Perret G., “Flow and Air-Entrainment Around Partially Submerged Vertical Cylinders,” Physical Review Fluids, Vol. 4, No. 6, 2019, Paper 064801. https://doi.org/10.1103/physrevfluids.4.064801 Google Scholar

  • [34] Campanella O. H. and Cerro R. L., “Viscous Flow on the Outside of a Horizontal Rotating Cylinder: The Roll Coating Regime with a Single Fluid,” Chemical Engineering Science, Vol. 39, No. 10, 1984, pp. 1443–1449. https://doi.org/10.1016/0009-2509(84)80002-0 Google Scholar

  • [35] Campanella O. H., Galazzo J. L. and Cerro R. L., “Viscous Flow on the Outside of a Horizontal Rotating Cylinder—II. Dip Coating with a Non-Newtonian Fluid,” Chemical Engineering Science, Vol. 41, No. 11, 1986, pp. 2707–2713. https://doi.org/10.1016/0009-2509(86)80001-x Google Scholar

  • [36] Safarzadeh S. and Rahimi A. B., “Numerical Investigation of Flow and Heat Transfer From a Rotating Sphere with Constant Angular Velocity Around Vertical Axis Floating in Stationary Fluid,” Journal of Heat Transfer, Vol. 144, No. 2, 2022, Paper 021802. https://doi.org/10.1115/1.4053008 Google Scholar

  • [37] Hirt C. W. and Nichols B. D., “Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries,” Journal of Computational Physics, Vol. 39, No. 1, 1981, pp. 201–225. https://doi.org/10.1016/0021-9991(81)90145-5 CrossrefGoogle Scholar

  • [38] Du W., Feng D., Xu J. and Wei W., “Computational Fluid Dynamics Modeling of Gas–Liquid Two-Phase Flow Around a Spherical Particle,” Chemical Engineering and Technology, Vol. 36, No. 5, 2013, pp. 840–850. https://doi.org/10.1002/ceat.201200486 Google Scholar

  • [39] Brackbill J. U., Kothe D. B. and Zemach C., “A Continuum Method for Modeling Surface Tension,” Journal of Computational Physics, Vol. 100, No. 2, 1992, pp. 335–354. https://doi.org/10.1016/0021-9991(92)90240-y CrossrefGoogle Scholar

  • [40] Johnson N. D., “High-Reynolds Number Flow Past a Rotating Cylinder with and Without Thom Discs,” Ph.D. Dissertation, Univ. of Manchester, Manchester, England, U.K., 2011. Google Scholar

  • [41] Zahmatkesh I. and Torshizi E., “Scrutiny of Unsteady Flow and Heat Transfer in a Backward-Facing Step Under Pulsating Nanofluid Blowing Using the Eulerian-Eulerian Approach,” Journal of Mechanics, Vol. 35, No. 1, 2019, pp. 93–105. https://doi.org/10.1017/jmech.2017.73 Google Scholar

  • [42] Patankar S. V., Numerical Heat Transfer and Fluid Flow, 1st ed., CRC Press, Boca Raton, FL, 1980. https://doi.org/10.1201/9781482234213 CrossrefGoogle Scholar

  • [43] Cheng X., Chen Y. and Luo L., “Numerical Simulation of Air-Water Two-Phase Flow over Stepped Spillways,” Science in China, Series E: Technological Sciences, Vol. 49, No. 6, 2006, pp. 674–684. https://doi.org/10.1007/s10288-006-2029-2 Google Scholar

  • [44] Issa R. I., “Solution of the Implicitly Discretised Fluid Flow Equations by Operator-Splitting,” Journal of Computational Physics, Vol. 62, No. 1, 1986, pp. 40–65. https://doi.org/10.1016/0021-9991(86)90099-9 CrossrefGoogle Scholar

  • [45] Ferziger J. H. and Peric M., Computational Methods for Fluid Dynamics, Springer-Verlag, New York, 1996. https://doi.org/10.1007/978-3-642-97651-3 CrossrefGoogle Scholar