Skip to main content
Skip to article control options
AIAA 2020-1949
Session: Advancements in Uncertainty Analysis for Wind Energy Applications
Published Online:https://doi.org/10.2514/6.2020-1949
Abstract:

Uncertainty is present in all wind energy problems of interest, but quantifying its impact for wind energy research, design and analysis applications often requires the collection of large ensembles of numerical simulations. These predictions require a range of model fidelity as predictive models, that include the interaction of atmospheric and wind turbine wake physics, can require weeks or months to solve on institutional high-performance computing systems. The need for these extremely expensive numerical simulations extends the computational resource requirements usually associated with uncertainty quantification analysis. To alleviate the computational burden, we propose here to adopt several Multilevel-Multifidelity sampling strategies that we compare for a realistic test case. A demonstration study was completed using simulations of a V27 turbine at Sandia National Laboratories’ SWiFT facility in a neutral atmospheric boundary layer. The flow was simulated with three models of disparate fidelity. OpenFAST with TurbSim was used stand-alone as the most computationally-efficient, lower-fidelity model. The computational fluid dynamics code Nalu-Wind was used for large eddy simulations with both medium-fidelity actuator disk and high-fidelity actuator line models, with various mesh resolutions. In an uncertainty quantification study, we considered five different turbine properties as random parameters: yaw offset, generator torque constant, collective blade pitch, gearbox efficiency and blade mass. For all quantities of interest, the Multilevel-Multifidelity estimators demonstrated greater efficiency compared to standard and multilevel Monte Carlo estimators.