Skip to main content
Skip to article control options
No AccessFull-Length Paper

Relaxed Autonomously Switched Hybrid System Approach to Indirect Multiphase Aerospace Trajectory Optimization

Published Online:

This investigation presents a methodology that simplifies the design of multiphase trajectories for aerospace vehicles using indirect methods. Such systems can be viewed as autonomously switched hybrid systems. The trajectories for such systems are subject to piecewise continuous dynamic equations. Moreover, each phase can be associated with a unique cost functional. Therefore, the cost functional of the overall trajectory design problem is also piecewise continuous. Consequently, the necessary conditions of optimality result in a multipoint boundary value problem in a system of differential-algebraic equations. These equations can be difficult to solve because the convergence of existing numerical algorithms is contingent upon supplying an initial guess that is close to the solution, which is not straightforward. The proposed method addresses this limitation, in part, by reducing the problem to a two-point boundary value problem by introducing sigmoid functions to obtain a single system of dynamic equations and a cost functional that are continuous and differentiable throughout the multiphase trajectory. The resultant reduced problem is solved by employing a continuation scheme, wherein the solution approach begins with solving a trivial problem, which is then evolved iteratively to the problem of interest. The proposed method is demonstrated using two examples: 1) time-switched Atlas V 411 launch to circular orbit; and 2) state-switched Mars entry, descent, and landing. The resultant trajectories are found to approximate the solutions of the respective original multipoint boundary value problems very well.


  • [1] Tavernini L., “Differential Automata and Their Discrete Simulators,” Nonlinear Analysis, Theory, Methods and Applications, Vol. 11, No. 6, 1987, pp. 665–683. doi: CrossrefGoogle Scholar

  • [2] Caines P. and Shaikh M., “Optimality Zone Algorithms for Hybrid Systems: Efficient Algorithms for Optimal Location and Control Computation,” Hybrid Systems: Computation and Control, Vol. 3927, Lecture Notes in Computer Science Series, Springer, New York, 2006, pp. 123–137. doi: CrossrefGoogle Scholar

  • [3] Bengea S. C. and DeCarlo R. A., “Optimal Control of Switching Systems,” Automatica, Vol. 41, No. 1, 2005, pp. 11–27. doi: ATCAA9 0005-1098 Google Scholar

  • [4] Riedinger P., Daafouz J. and Iung C., “About Solving Hybrid Optimal Control Problems,” 17th IMACS World Congress, 2005. Google Scholar

  • [5] Egerstedt M., Wardi Y. and Axelsson H., “Transition-Time Optimization for Switched-Mode Dynamical Systems,” IEEE Transactions on Automatic Control, Vol. 51, No. 1, 2006, pp. 110–115. doi: IETAA9 0018-9286 CrossrefGoogle Scholar

  • [6] Iyer R., “Optimal Start-Up of an Evaporation System Modeled as an Interconnected Hybrid Dynamical System,” M.S. Dissertation, School of Electrical and Computer Engineering, Purdue Univ., West Lafayette, IN, May 2015. Google Scholar

  • [7] Wei S., Zefran M., Uthaichana K. and DeCarlo R., “Hybrid Model Predictive Control for Stabilization of Wheeled Mobile Robots Subject to Wheel Slippage,” IEEE International Conference on Robotics and Automation, IEEE Publ., Piscataway, NJ, Dec. 2007, pp. 2373–4378. doi: Google Scholar

  • [8] Chilan C. M. and Conway B. A., “Automated Design of Multiphase Space Missions Using Hybrid Optimal Control,” Journal of Guidance, Control, and Dynamics, Vol. 36, No. 5, 2013, pp. 1410–1424. doi: JGCODS 0731-5090 LinkGoogle Scholar

  • [9] Shaikh M. and Caines P., “On the Hybrid Optimal Control Problem: Theory and Algorithms,” IEEE Transactions on Automatic Control, Vol. 52, No. 9, 2007, pp. 1587–1603. doi: IETAA9 0018-9286 CrossrefGoogle Scholar

  • [10] Shaikh M. and Caines P., “Correction to ‘On the Hybrid Optimal Control Problem: Theory and Algorithms’,” IEEE Transactions on Automatic Control, Vol. 54, No. 6, 2009, p. 1440. doi: IETAA9 0018-9286 CrossrefGoogle Scholar

  • [11] Xu X. and Antsaklis P., “Optimal Control of Switched Systems Based on Parameterization of the Switching Instants,” IEEE Transactions on Automatic Control, Vol. 49, No. 1, 2004, pp. 2–16. doi: IETAA9 0018-9286 CrossrefGoogle Scholar

  • [12] Passenberg B., Sobotka M., Stursberg O., Buss M. and Caines P. E., “An Algorithm for Discrete State Sequence and Trajectory Optimization for Hybrid Systems with Partitioned State Space,” 49th IEEE Conference on Decision and Control, IEEE Publ., Piscataway, NJ, Dec. 2010, pp. 4223–4229. doi: Google Scholar

  • [13] Pontani M. and Conway B. A., “Optimal Low-Thrust Orbital Maneuvers via Indirect Swarming Method,” Journal of Optimization Theory and Applications, Vol. 162, No. 1, 2014, pp. 272–292. doi: JOTABN 0022-3239 CrossrefGoogle Scholar

  • [14] Bryson A. E. and Ho Y., “Optimization Problems for Dynamic Systems with Path Constraints,” Applied Optimal Control: Optimization, Estimation and Control, Revised Printing, Hemisphere, Washington, D.C., 1975, pp. 90–127. Google Scholar

  • [15] Longuski J., Guzmán J. J. and Prussing J. E., “The Euler-Lagrange Theorem,” Optimal Control with Aerospace Applications, Springer, El Segundo, CA, 2014, pp. 52–56. doi: CrossrefGoogle Scholar

  • [16] Hestenes M. R., “Classical Fixed Endpoint Problems,” Calculus of Variations and Optimal Control Theory, Wiley, New York, 1966, pp. 87–92. Google Scholar

  • [17] Keller H. B., “Initial-Value Methods (Shooting),” Numerical Methods for Two-Point Boundary-Value Problems, Blaisdell, Waltham, MA, 1968, pp. 39–71. Google Scholar

  • [18] Ascher U., Mattheij R. and Russell R., “Finite Difference Methods,” Numerical Solution of Boundary Value Problems of Ordinary Differential Equations, Prentice–Hall, Upper Saddle River, NJ, 1988, pp. 185–274. doi: Google Scholar

  • [19] Kierzenka J. and Shampine L., “A BVP Solver Based on Residual Control and the Matlab PSE,” ACM Transactions on Mathematical Software, Vol. 27, No. 3, 2001, pp. 299–316. doi: ACMSCU 0098-3500 CrossrefGoogle Scholar

  • [20] Bryson A. E. and Ho Y., “Optimization Problems for Dynamic Systems,” Applied Optimal Control: Optimization, Estimation and Control, Revised Printing, Hemisphere, Washington, D.C., 1975, pp. 42–89. Google Scholar

  • [21] Grant M. J. and Braun R. D., “Rapid Indirect Trajectory Optimization for Conceptual Design of Hypersonic Missions,” Journal of Spacecraft and Rockets, Vol. 52, No. 1, 2015, pp. 177–182. doi: JSCRAG 0022-4650 LinkGoogle Scholar

  • [22] Atlas V Launch Services User’s Guide, United Launch Alliance, Centennial, CO, March 2010, pp. 1–5. Google Scholar

  • [23] Dormand J. R. and Prince P. J., “A Family of Embedded Runge-Kutta Formulae,” Journal of Computational and Applied Mathematics, Vol. 6, No. 1, 1980, pp. 19–26. doi: JCAMDI 0377-0427 CrossrefGoogle Scholar

  • [24] Way D. W., Powell R. W., Chen A., Steltzner A. D., Martin A. M. S., Burkhart P. D. and Mendeck G. F., “Mars Science Laboratory: Entry, Descent, and Landing System Performance,” IEEE Aerospace Conference, IEEE Paper  2007-1467, Piscataway, NJ, March 2007, p. 1467. Google Scholar

  • [25] Way D. W., Davis J. L. and Shidner J. D., “Assessment of the Mars Science Laboratory Entry, Descent, and Landing Simulation,” American Astronautical Soc. Paper 13-420, Feb. 2013. CrossrefGoogle Scholar

  • [26] Dawson M., Brewster G., Conrad C., Kilwine M., Chenevert B. and Morgan O., “Monopropellant Hydrazine 700 lbf Throttling Terminal Descent Engine for Mars Science Laboratory,” 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper 2007-5481, July 2007. doi: LinkGoogle Scholar

  • [27] Kornfeld R. P., Prakash R., Devereaux A. S., Greco M. E., Harmon C. E. and Kipp D. M., “Verification and Validation of the Mars Science Laboratory/Curiosity Rover Entry, Descent, and Landing System,” Journal of Spacecraft and Rockets, Vol. 51, No. 4, 2014, pp. 1251–1269. doi: JSCRAG 0022-4650 LinkGoogle Scholar

  • [28] Saikia S. J., “Seven Minutes of Terror and ‘Some Science’,” 12th International Planetary Probe Workshop, Cologne, Germany, 2015, %20Saikia.pdf [retrieved 12 March 2017]. Google Scholar

  • [29] Sutton K. and Graves R. A., “A General Stagnation Point Convective Heating Equation for Arbitrary Gas Mixtures,” NASA TR-R-376, Nov. 1971. Google Scholar