Skip to main content
Skip to article control options
No AccessFull-Length Papers

Multiphase Effects on Solid Rocket Nozzle Performance

Published Online:https://doi.org/10.2514/1.B39096

In the present work, we discuss the employment of a computational fluid dynamics approach to evaluate the specific impulse of solid rocket motors. Particular care is focused on two-phase flow and divergence losses, which represent the most important contributions to the overall nozzle performance loss. A comprehensive parametric study is performed on the Zefiro 9A nozzle with the aim to evaluate the detrimental influence of relevant key features, such as alumina particle dimension, polydispersion, crystallization, and motor operating conditions. The capability of the present model to represent, with good accuracy, the overall performance of solid rocket motors is demonstrated by comparing the experimental specific impulse of several motors with numerical predictions.

References

  • [1] Carr C. E. and Majdalani J., “Booster, Tactical Flight Tests Abound While Variety of Science Missions are Launched,” Aerospace America: 2020 Year in Review, AIAA, Reston, VA, Dec. 2020, p. 59. Google Scholar

  • [2] Sutton G. P. and Biblarz O., Rocket Propulsion Elements, Wiley, New York, 2001, p. 555. Google Scholar

  • [3] Geisler R., “A Global View of the Use of Aluminum Fuel in Solid Rocket Motors,” 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper 2002-3748, 2002. https://doi.org/10.2514/6.2002-3748 LinkGoogle Scholar

  • [4] Najjar F., Ferry J. P., Haselbacher A. and Balachandar S., “Simulations of Solid-Propellant Rockets: Effects of Aluminum Droplet Size Distribution,” Journal of Spacecraft and Rockets, Vol. 43, No. 6, 2006, pp. 1258–1270. https://doi.org/10.2514/1.17326 LinkGoogle Scholar

  • [5] Shimada T., Sekiguchi M. and Sekino N., “Flow Inside a Solid Rocket Motor with Relation to Nozzle Inlet Ablation,” AIAA Journal, Vol. 45, No. 6, 2007, pp. 1324–1332. https://doi.org/10.2514/1.22952 LinkGoogle Scholar

  • [6] Attili A., Favini B., Di Giacinto M. and Serraglia F., “Numerical Simulation of Multiphase Flows in Solid Rocket Motors,” AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper 2009-5507, 2009. https://doi.org/10.2514/6.2009-5507 LinkGoogle Scholar

  • [7] Li X., Zhang H. and Bai B., “Particle-Free Zone of the Two-Phase Flow in a Convergent-Divergent Nozzle,” Powder Technology, Vol. 394, Dec. 2021, pp. 1169–1177. https://doi.org/10.1016/j.powtec.2021.09.055 CrossrefGoogle Scholar

  • [8] Zhang J., Jackson T. L., Najjar F. and Buckmaster J., “High-Fidelity Multiphysics Simulations of Erosion in SRM Nozzles,” 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper 2009-5499, 2009. https://doi.org/10.2514/6.2009-5499 AbstractGoogle Scholar

  • [9] Zhang J., Jackson T. L., Buckmaster J. and Najjar F., “Erosion in Solid-Propellant Rocket Motor Nozzles with Unsteady Nonuniform Inlet Conditions,” Journal of Propulsion and Power, Vol. 27, No. 3, 2011, pp. 642–649. https://doi.org/10.2514/1.47158 LinkGoogle Scholar

  • [10] Thakre P., Rawat R., Clayton R. and Yang V., “Mechanical Erosion of Graphite Nozzle in Solid-Propellant Rocket Motor,” Journal of Propulsion and Power, Vol. 29, No. 3, 2013, pp. 593–601. https://doi.org/10.2514/1.B34630 LinkGoogle Scholar

  • [11] Cross P. G. and Boyd I. D., “Reduced Reaction Mechanism for Rocket Nozzle Ablation Simulations,” Journal of Thermophysics and Heat Transfer, Vol. 32, No. 2, 2018, pp. 429–439. https://doi.org/10.2514/1.T5291 LinkGoogle Scholar

  • [12] Troyes J., Dubois I., Borie V. and Boischot A., “Multi-Phase Reactive Numerical Simulations of a Model Solid Rocket Exhaust Jet,” 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper 2006-4414, 2006. https://doi.org/10.2514/6.2006-4414 LinkGoogle Scholar

  • [13] Coats D., Levine J., Nickerson G., Tyson T., Cohen N. and Price C., “A Computer Program for the Prediction of Solid Propellant Rocket Motor Performance,” Vols. I–III, Ultrasystems TR ADA015140, Irvine CA, 1975. Google Scholar

  • [14] Coats D., Colegrove P. and Dunn S., “A Critical Review of the SPP Loss Mechanisms,” 25th Joint Propulsion Conference, AIAA Paper 1989-2781, 1989. 10.2514/6.1989-2781 LinkGoogle Scholar

  • [15] Coats D., Dunn S. and French J., “Improvements to the Solid Performance Program (SPP),” 39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper 2003-4504, 2003. https://doi.org/10.2514/6.2003-4504 LinkGoogle Scholar

  • [16] Landsbaum E. M., Salinas M. P. and Leary J. P., “Specific Impulse Prediction of Solid-Propellant Motors,” Journal of Spacecraft, Vol. 17, No. 5, 1980, pp. 400–406. https://doi.org/10.2514/3.57758 LinkGoogle Scholar

  • [17] McBride B. J. and Gordon S., “Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications,” NASA RP-1311, 1994. https://doi.org/19950013764 Google Scholar

  • [18] Hermsen R., “Aluminum Oxide Particle Size for Solid Rocket Motor Performance Prediction,” Journal of Spacecraft and Rockets, Vol. 18, No. 6, 1981, pp. 483–490. https://doi.org/10.2514/3.57845 LinkGoogle Scholar

  • [19] Spalart P. R. and Allmaras S. R., “A One-Equation Turbulence Model for Aerodynamic Flows,” La Recherche Aerospatiale, Vol. 1, 1994, pp. 5–21. https://doi.org/10.2514/6.1992-439 Google Scholar

  • [20] Marble F. E., “Dynamics of a Gas Containing Small Solid Particles,” Combustion and Propulsion (5th AGARDograph Colloquium), Pergamon Press, New York, 1963, pp. 175–213. Google Scholar

  • [21] Henderson C. B., “Drag Coefficients of Spheres in Continuum and Rarefied Flows,” AIAA Journal, Vol. 14, No. 6, 1976, pp. 707–708. https://doi.org/10.2514/3.61409 LinkGoogle Scholar

  • [22] Shimada T., Daimon Y. and Sekino N., “Computational Fluid Dynamics of Multiphase Flows in Solid Rocket Motors,” Japan Aerospace Exploration Agency TR JAXA-SP-05-035E, Chofu, Japan, 2006. Google Scholar

  • [23] Kavanau L. L. and Drake R., “Heat Transfer from Spheres to a Rarefied Gas in Subsonic Flow,” Univ. of California, Berkeley, Inst. of Engineering Research TR AD0001911, Berkeley, CA, 1953. Google Scholar

  • [24] Bianchi D., Nasuti F. and Onofri M., “Radius of Curvature Effects on Throat Thermochemical Erosion in Solid Rocket Motors,” Journal of Spacecraft and Rockets, Vol. 52, No. 2, 2015, pp. 320–330. https://doi.org/10.2514/1.A32944 LinkGoogle Scholar

  • [25] Bianchi D. and Nasuti F., “Navier–Stokes Simulation of Graphite Nozzle Erosion at Different Pressure Conditions,” AIAA Journal, Vol. 53, No. 2, 2015, pp. 356–366. https://doi.org/10.2514/1.J053154 LinkGoogle Scholar

  • [26] Bianchi D. and Neri A., “Numerical Simulation of Chemical Erosion in Vega Solid-Rocket-Motor Nozzles,” Journal of Propulsion and Power, Vol. 34, No. 2, 2018, pp. 482–498. https://doi.org/10.2514/1.B36388 LinkGoogle Scholar

  • [27] Leccese G., Bianchi D., Betti B., Lentini D. and Nasuti F., “Convective and Radiative Wall Heat Transfer in Liquid Rocket Thrust Chambers,” Journal of Propulsion and Power, Vol. 34, No. 2, 2018, pp. 318–326. https://doi.org/10.2514/1.B36589 LinkGoogle Scholar

  • [28] Leccese G., Bianchi D. and Nasuti F., “Numerical Investigation on Radiative Heat Loads in Liquid Rocket Thrust Chambers,” Journal of Propulsion and Power, Vol. 35, No. 5, 2019, pp. 930–943. https://doi.org/10.2514/1.B37536 LinkGoogle Scholar

  • [29] Leccese G., Bianchi D., Nasuti F., Keith Javier S., Pavan N. and Brian Joseph C., “Experimental and Numerical Methods for Radiative Wall Heat Flux Predictions in Paraffin-Based Hybrid Rocket Engines,” Acta Astronautica, Vol. 158, May 2019, pp. 304–312. https://doi.org/10.1016/j.actaastro.2018.06.032 CrossrefGoogle Scholar

  • [30] Migliorino M. T., Bianchi D. and Nasuti F., “Numerical Analysis of Paraffin-Wax/Oxygen Hybrid Rocket Engines,” Journal of Propulsion and Power, Vol. 36, No. 6, 2020, pp. 806–819. https://doi.org/10.2514/1.B37914 LinkGoogle Scholar

  • [31] Grossi M., Bianchi D. and Favini B., “Modeling Multiphase Effects on Pressure Oscillations in Solid Propulsion,” AIAA Propulsion and Energy 2020 Forum, AIAA Paper 2020-3927, 2020.https://doi.org/10.2514/6.2020-3927 LinkGoogle Scholar

  • [32] Bianchi D., Migliorino M. T., Rotondi M., Kamps L. and Nagata H., “Numerical Analysis of Nozzle Erosion in Hybrid Rockets and Comparison with Experiments,” Journal of Propulsion and Power, Vol. 38, No. 3, 2022, pp. 389–409. https://doi.org/10.2514/1.B38547 LinkGoogle Scholar

  • [33] Migliorino M. T., Bianchi D. and Nasuti F., “Graphite Nozzle Erosion Trends in Paraffin/Oxygen Hybrid Rockets,” Journal of Propulsion and Power, Vol. 38, No. 4, 2022, pp. 508–522. https://doi.org/10.2514/1.B38574 LinkGoogle Scholar

  • [34] Roache P. J., “Verification of Codes and Calculations,” AIAA Journal, Vol. 36, No. 5, 1998, pp. 696–702. https://doi.org/10.2514/2.457 LinkGoogle Scholar

  • [35] Serra R. A., “Determination of Internal Gas Flows by a Transient Numerical Technique,” AIAA Journal, Vol. 10, No. 5, 1972, pp. 603–611. https://doi.org/10.2514/3.50163 LinkGoogle Scholar

  • [36] Chang I.-S., “One- and Two-Phase Nozzle Flows,” AIAA Journal, Vol. 18, No. 12, 1980, pp. 1455–1461. https://doi.org/10.2514/3.50905 LinkGoogle Scholar

  • [37] Chang H. T., Hourng L. W., Chien L. C. and Chien L. C., “Application of Flux-Vector-Splitting Scheme to a Dilute Gas-Particle JPL Nozzle Flow,” International Journal for Numerical Methods in Fluids, Vol. 22, No. 10, 1996, pp. 921–935. https://doi.org/10.1002/(SICI)1097-0363(19960530)22:10<921::AID-FLD382>3.0.CO;2-1 CrossrefGoogle Scholar

  • [38] Ching E. J., Brill S. R., Barnhardt M. and Ihme M., “A Two-Way Coupled Euler-Lagrange Method for Simulating Multiphase Flows with Discontinuous Galerkin Schemes on Arbitrary Curved Elements,” Journal of Computational Physics, Vol. 405, March 2020, Paper 109096. https://doi.org/10.1016/j.jcp.2019.109096 CrossrefGoogle Scholar

  • [39] Ervin W. D. and Gibson J. D., “Production Quality Assurance Testing of a Minuteman 3 LGM-30G Stage 2 Rocket Motor at Simulated Pressure Altitude (Motor S/N PQA6-60),” Arnold Engineering Development Center TR AD0907909, Arnold AFB, TN, 1973. Google Scholar

  • [40] Bianchi S., Serraglia F., Giliberti F., Betti F. and Milana C., “VEGA Solid Rocket Motors Development and Qualification,” 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper 2010-7084, 2010. https://doi.org/10.2514/6.2010-7084 LinkGoogle Scholar

  • [41] Bianchi D., Favini B. and Neri A., “Performance Reconstruction of VEGA Solid Rocket Motors: VERTA Flights Experience,” 2018 Joint Propulsion Conference, AIAA Paper 2018-4692, 2018. https://doi.org/10.2514/6.2018-4692 LinkGoogle Scholar

  • [42] Chase C., “Development Status of the Inertial Upper Stage Solid Motors,” 16th Joint Propulsion Conference, AIAA Paper 1980-1267, 1980. https://doi.org/10.2514/6.1980-1267 LinkGoogle Scholar

  • [43] Hillig W. and Turnbull D., “Theory of Crystal Growth in Undercooled Pure Liquids,” Journal of Chemical Physics, Vol. 24, No. 4, 1956, pp. 914–914. https://doi.org/10.1063/1.1742646 Google Scholar

  • [44] Rodionov A., Plastinin Y., Drakes J., Simmons M. and Hiers R., “Modeling of Multiphase Alumina-Loaded Jet Flow Fields,” 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA Paper 1998-3462, 1998. https://doi.org/10.2514/6.1998-3462 LinkGoogle Scholar

  • [45] Gimelshein S., Markelov G. and Muylaert J., “Numerical Modeling of Low Thrust Solid Propellant Nozzles at High Altitudes,” 9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference, AIAA Paper 2006-3273, 2006. https://doi.org/10.2514/6.2006-3273 LinkGoogle Scholar