Skip to main content
No AccessFull-Length Paper

Multiphase Optimal Control Framework for Commercial Aircraft Four-Dimensional Flight-Planning Problems

Published Online:

The calculation of a flight plan involves the consideration of multiple elements. They can be classified as either continuous or discrete, and they can include nonlinear aircraft performance, atmospheric conditions, wind forecasts, airspace structure, amount of departure fuel, and operational constraints. Moreover, multiple differently characterized flight phases must be considered in flight planning. The flight-planning problem can be regarded as a trajectory optimization problem. A natural way to address a trajectory optimization problem is using optimal control techniques. The multiphase nature of the problem and the nonlinear dynamics of the aircraft lead to the formulation of a multiphase optimal control problem. A Hermite–Simpson collocation method is employed to transcribe the infinite-dimensional optimal control problem into a finite-dimensional optimization one, which is solved using a nonlinear programming solver. An application to the optimal takeoff weight, minimum fuel consumption trajectory planning problem is presented. Aircraft performances, flight procedures, and the resulting fuel consumption are analyzed. The problem is also solved for different takeoff weights and different cost indices. Their effects in the optimal performances are presented and discussed.


  • [1] The ATM Target Concept: SESAR Definition Phase Milestone, Deliverable 3,” SESAR Consortium Document DLM-0612-001-02-0, Sept. 2007. Google Scholar

  • [2] Prats X., Puig V. and Quevedo J., “Equitable Aircraft Noise-Abatement Departure Procedures,” Journal of Guidance, Control, and Dynamics, Vol. 34, No. 1, 2011, pp. 192–203. LinkGoogle Scholar

  • [3] Houacine M. and Khardi S., “Gauss Pseudospectral Method for Less Noise and Fuel Consumption from Aircraft Operations,” Journal of Aircraft, Vol. 47, No. 6, 2010, pp. 2152–2159. LinkGoogle Scholar

  • [4] Torres R., Chaptal J., Bes C. and Hiriart-Urruty J., “Optimal, Environmentally Friendly Departure Procedures for Civil Aircraft,” Journal of Aircraft, Vol. 48, No. 1, 2011, pp. 11–22. LinkGoogle Scholar

  • [5] Pargett D. M. and Ardema M. D., “Flight Path Optimization at Constant Altitude,” Journal of Guidance, Control, and Dynamics, Vol. 30, No. 4, 2007, p. 1197. LinkGoogle Scholar

  • [6] Franco A., Rivas D. and Valenzuela A., “Minimum-Fuel Cruise at Constant Altitude with Fixed Arrival Time,” Journal of Guidance, Control, and Dynamics, Vol. 33, No. 1, 2010, pp. 280–285. LinkGoogle Scholar

  • [7] Khardi S., Abdallah L., Konovalova O. and Houacine M., “Optimal Approach Minimizing Aircraft Noise and Fuel Consumption,” Acta Acustica United with Acustica, Vol. 96, No. 1, 2010, pp. 68–75. CrossrefGoogle Scholar

  • [8] Robinson J. and Kamgarpour M., “Benefits of Continuous Descent Operations in High-Density Terminal Airspace Under Scheduling Constraints,” 10th AIAA Aviation Technology, Integration, and Operations Conference, AIAA Paper  2010-9115, 2010, pp. 13–15. LinkGoogle Scholar

  • [9] Cao Y., Kotegawa T. and Post J., “Evaluation of Continuous Descent Approach as a Standard Terminal Airspace Operation,” Proceedings of the 9th USA/Europe Air Traffic Management Research and Development Seminar, Federal Aviation Administration (FAA) and Eurocontrol, Berlin, 2011. Google Scholar

  • [10] Clarke J. P. B., Ho N. T., Ren L., Brown J. A., Elmer K. R., Tong K.-O. and Wat J. K., “Continuous Descent Approach: Design and Flight Test for Louisville International Airport,” Journal of Aircraft, Vol. 41, No. 5, 2004, pp. 1054–1066. LinkGoogle Scholar

  • [11] Sprong K., Klein K., Shiotsuki C., Arrighi J. and Liu S., “Analysis of AIRE Continuous Descent Arrival Operations at Atlanta and Miami,” Proceedings of the 27th IEEE/AIAA Digital Avionics Systems Conference, IEEE, Piscataway, NJ, 2008, pp. 3.A.5-1–3.A.5-13. doi: CrossrefGoogle Scholar

  • [12] Coppenbarger R., Mead R. and Sweet D., “Field Evaluation of the Tailored Arrivals Concept for Datalink-Enabled Continuous Descent Approach,” Journal of Aircraft, Vol. 46, No. 4, 2010, pp. 1200–1209. LinkGoogle Scholar

  • [13] Betts J. T. and Cramer E. J., “Application of Direct Transcription to Commercial Aircraft Trajectory Optimization,” Journal of Guidance, Control, and Dynamics, Vol. 18, No. 1, 1995, pp. 151–159. LinkGoogle Scholar

  • [14] Soler M., “Commercial Aircraft Trajectory Planning based on Multiphase Mixed-Integer Optimal Control,” Ph.D. Thesis, Dept. of Signal Theory and Communications, Univ. Rey Juan Carlos, Madrid, 2013, Chap. 4. Google Scholar

  • [15] Jorris T. R. and Cobb R. G., “Multiple Method 2-D Trajectory Optimization Satisfying Waypoints and No-Fly Zone Constraints,” Journal of Guidance, Control, and Dynamics, Vol. 31, No. 3, 2008, pp. 543–553. LinkGoogle Scholar

  • [16] Jorris T. R. and Cobb R. G., “Three-Dimensional Trajectory Optimization Satisfying Waypoints and No-Fly Constraints,” Journal of Guidance, Control, and Dynamics, Vol. 32, No. 2, 2009, pp. 551–572. LinkGoogle Scholar

  • [17] Roh W. and Kim Y., “Trajectory Optimization for a Multi-Stage Launch Vehicle using Time Finite Element and Direct Collocation Methods,” Engineering Optimization, Vol. 34, No. 1, 2002, pp. 15–32. CrossrefGoogle Scholar

  • [18] Ross I. and Fahroo F., “Pseudospectral Knotting Methods for Solving Optimal Control Problems,” Journal of Guidance, Control, and Dynamics, Vol. 27, No. 3, 2004, pp. 397–405. LinkGoogle Scholar

  • [19] Huntington G. and Rao A., “Optimal Configuration of Spacecraft Formations via a Gauss Pseudospectral Method,” Advances in the Astronautical Sciences, Vol. 120, No. 1, 2005, pp. 33–50. Google Scholar

  • [20] Norsell M., “Multistage Trajectory Optimization with Radar-Range Constraints,” Journal of Aircraft, Vol. 42, No. 4, 2005, pp. 849–857. LinkGoogle Scholar

  • [21] Jacobsen M. and Ringertz U., “Airspace Constraints in Aircraft Emission Trajectory Optimization,” Journal of Aircraft, Vol. 47, No. 4, 2010, pp. 1256–1265. LinkGoogle Scholar

  • [22] Soler M., Zapata D., Olivares A. and Staffetti E., “Framework for Aircraft 4-D Trajectory Planning Towards an Efficient Air Traffic Management,” Journal of Aircraft, Vol. 49, No. 1, 2012, pp. 341–348. LinkGoogle Scholar

  • [23] Soler M., Olivares A. and Staffetti E., “Hybrid Optimal Control Approach to Commercial Aircraft Trajectory Optimization,” Journal of Guidance, Control, and Dynamics, Vol. 33, No. 3, 2010, pp. 985–991. LinkGoogle Scholar

  • [24] Hargraves C. R. and Paris S. W., “Direct Trajectory Optimization using Nonlinear Programming and Collocation,” Journal of Guidance, Control, and Dynamics, Vol. 10, No. 4, 1987, pp. 338–342. LinkGoogle Scholar

  • [25] Wächter A. and Biegler L., “On the Implementation of an Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear Programming,” Mathematical Programming, Vol. 106, No. 1, 2006, pp. 25–57. CrossrefGoogle Scholar

  • [26] Bellman R., “Dynamic Programming and Lagrange Multipliers,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 42, No. 10, 1956, p. 767. CrossrefGoogle Scholar

  • [27] Pontryagin L. S., Boltyanskii V., Gamkrelidze R. V. and Mishchenko E. F., The Mathematical Theory of Optimal Processes, Interscience, New York, 1962, pp. 9–114. Google Scholar

  • [28] Betts J. T., “Practical Methods for Optimal Control and Estimation using Nonlinear Programming,” Advances in Design and Control, Soc. for Industrial and Applied Mathematics, Philadelphia, 2010, Chap. 4.3. CrossrefGoogle Scholar

  • [29] Yan H., Fahroo F. and Ross I. M., “Accuracy and Optimality of Direct Transcription Methods,” Advances in the Astronautical Sciences, Vol. 105, No. 2, 2000, pp. 1613–1630. Google Scholar

  • [30] von Stryk O. and Bulirsch R., “Direct and Indirect Methods for Trajectory Optimization,” Annals of Operations Research, Vol. 37, No. 1, 1992, pp. 357–373. CrossrefGoogle Scholar

  • [31] Betts J. T., “Survey of Numerical Methods for Trajectory Optimization,” Journal of Guidance, Control, and Dynamics, Vol. 21, No. 2, 1998, pp. 193–207. LinkGoogle Scholar

  • [32] Kraft D., “On Converting Optimal Control Problems into Nonlinear Programming Problems,” Computational Mathematical Programming, Vol. 15, 1985, pp. 261–280. CrossrefGoogle Scholar

  • [33] Bock H. G. and Plitt K. J., “A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems,” Proceedings of the 9th International Federation of Automatic Control World Congress, Pergamon, New York, 1984, pp. 242–247. Google Scholar

  • [34] Tsang T., Himmelblau D. and Edgar T., “Optimal Control via Collocation and Non-Linear Programming,” International Journal of Control, Vol. 21, No. 5, 1975, pp. 763–768. CrossrefGoogle Scholar

  • [35] Williams P., “Hermite-Legendre–Gauss–Lobatto Direct Transcription Methods in Trajectory Optimization,” Advances in the Astronautical Sciences, Vol. 120, Pt. 1, Univelt, San Diego, CA, 2005, pp. 465–484. Google Scholar

  • [36] von Stryk O., “Numerical Solution of Optimal Control Problems by Direct Collocation,” Optimal Control—Calculus of Variations, Optimal Control Theory, and Numerical Methods, edited by Bulirsch R., Miele A. and Stoer J., Vol. 111, International Series of Numerical Mathematics, Birkhäuser, Boston, 1993, pp. 129–143. CrossrefGoogle Scholar

  • [37] Garg D., Patterson M., Hager W., Rao A., Benson D. and Huntington G., “A Unified Framework for the Numerical Solution of Optimal Control Problems using Pseudospectral Methods,” Automatica, Vol. 46, No. 11, 2010, pp. 1843–1851. CrossrefGoogle Scholar

  • [38] Ross I. and Karpenko M., “A Review of Pseudospectral Optimal Control: From Theory to Flight,” Annual Reviews in Control, Vol. 36, No. 2, 2012, pp. 182–197. CrossrefGoogle Scholar

  • [39] Nocedal J. and Wright S., Numerical Optimization, Springer–Verlag, New York, 1999, pp. 421–598. CrossrefGoogle Scholar

  • [40] Benjamin S., Dévényi D., Weygandt S., Brundage K., Brown J., Grell G., Kim D., Schwartz B., Smirnova T., Smith T. and et al., “An Hourly Assimilation–Forecast Cycle: The RUC,” Monthly Weather Review, Vol. 132, No. 2, 2004, pp. 495–518. CrossrefGoogle Scholar

  • [41] Benjamin S., Brundage K., Miller P., Smith T., Grell G., Kim D., Brown J., Schlatter T. and Morone L., “The Rapid Update Cycle at NMC,” 10th Conference on Numerical Weather Prediction, American Meteorological Soc., Portland, OR, 1994, pp. 566–568. Google Scholar

  • [42] Nuic A., User Manual for the Base of Aircraft Data (BADA) Revision 3.6, EUROCONTROL Experimental Center, Bretigny, France, 2005, pp. 1–87. Google Scholar

  • [43] Branicky M. S., Borkar V. S. and Mitter S. K., “A Unified Framework for Hybrid Control: Model and Optimal Control Theory,” IEEE Transactions on Automatic Control, Vol. 43, No. 1, 1998, pp. 31–45. CrossrefGoogle Scholar