Skip to main content
Skip to article control options
No AccessFull-Length Paper

Reduced-Order Modeling of Gust Responses

Published Online:

This paper describes two approaches to the construction of reduced-order models from computational fluid dynamics to predict the gust response of airfoils and wings. The first is a linear reduced-order model constructed using the eigensystem realization algorithm from pulse responses, and the second approach modifies the linear reduced-order model using steady-state data to introduce some nonlinearity into the reduced-order model. Results are presented for the Future Fast Aeroelastic Simulation Technologies wing and the Future Fast Aeroelastic Simulation Technologies crank airfoil. These show that for gusts of large amplitude in the transonic regime the response exhibits nonlinearity due to shock motion. This nonlinearity is not captured well by linear reduced-order models; however, the nonlinear reduced-order model shows better agreement with the full nonlinear simulation results.


  • [1] Wright J. R. and Cooper J. E., Introduction to Aircraft Aeroelasticity and Loads, 2nd ed., Wiley, Chichester, U.K., 2014, pp. 481–493. CrossrefGoogle Scholar

  • [2] Yang G. and Obayashi S., “Gust Response Analysis for SST with Navier–Stokes Equations,” Journal of Aircraft, Vol. 41, No. 6, 2004, pp. 1353–1359. doi: LinkGoogle Scholar

  • [3] Tang L. and Baeder J. D., “Adaptive Euler Simulations of Airfoil–Vortex Interaction,” International Journal for Numerical Methods in Fluids, Vol. 53, No. 5, 2007, pp. 777–792. doi: IJNFDW 0271-2091 CrossrefGoogle Scholar

  • [4] Sitaraman J., “CFD Based Unsteady Aerodynamic Modeling for Rotor Aeroelastic Analysis,” Ph.D. Dissertation, Univ. of Maryland, College Park, MD, 2003. Google Scholar

  • [5] Singh R. and Baeder J. D., “Generalized Moving Gust Response Using CFD with Application to Airfoil–Vortex Interaction,” AIAA Paper  1997-2208, June 1997. LinkGoogle Scholar

  • [6] Zaide A. and Raveh D., “Numerical Simulation and Reduced-Order Modeling of Airfoil Gust Response,” AIAA Journal, Vol. 44, No. 8, 2006, pp. 1826–1834. doi: AIAJAH 0001-1452 LinkGoogle Scholar

  • [7] Wales C., Jones D. and Gaitonde A., “Simulation of Airfoil Gust Responses Using Prescribed Velocities,” 5th International Forum on Aeroelasticity and Structural Dynamics, IFASD-2011-053, June 2011. Google Scholar

  • [8] Romanowski M. C., “Reduced Order Unsteady Aerodynamic and Aeroelastic Models Using Karhunen–Loeve Eigenmodes,” Proceedings of the Sixth AIAA Symposium on Multidisciplinary Analysis and Optimization 1996, AIAA Paper  1996-3981, Sept. 1996. LinkGoogle Scholar

  • [9] Romanowski M. C. and Dowell E. H., “Reduced Order Euler Equations for Unsteady Aerodynamic Flows: Numerical Techniques,” AIAA Paper  1996-0528, Jan. 1996. Google Scholar

  • [10] Hall K. C., Thomas J. P. and Dowell E. H., “Proper Orthogonal Decomposition Technique for Transonic Unsteady Aerodynamic Flows,” AIAA Journal, Vol. 38, No. 10, 2000, pp. 1853–1862. doi: AIAJAH 0001-1452 LinkGoogle Scholar

  • [11] Willcox K. and Peraire J., “Balanced Model Reduction via the Proper Orthogonal Decomposition,” AIAA Journal, Vol. 40, No. 11, 2002, pp. 2323–2330. LinkGoogle Scholar

  • [12] Raveh D. E., “Reduced-Order Models for Nonlinear Unsteady Aerodynamics,” AIAA Journal, Vol. 39, No. 8, 2001, pp. 1417–1429. doi: AIAJAH 0001-1452 LinkGoogle Scholar

  • [13] Silva W. A., “Discrete-Time Linear and Nonlinear Aerodynamic Impulse Responses for Efficient CFD Analyses,” Ph.D. Thesis, Dept. of Applied Science, College of William and Mary, Williamsburg, VA, 1997. Google Scholar

  • [14] Gaitonde A. L. and Jones D. P., “A Two-Dimensional Linearized Unsteady Euler Scheme for Pulse Response Calculations,” Journal of Aerospace Engineering, Vol. 216, No. 2, 2002, pp. 89–104. CrossrefGoogle Scholar

  • [15] Juang J. N. and Pappa R. S., “Eigensystem Realization Algorithm for Modal Parameter Identification and Model Reduction,” Journal of Guidance, Control, and Dynamics, Vol. 8, No. 5, 1985, pp. 620–627. doi: JGCODS 0731-5090 LinkGoogle Scholar

  • [16] Ma Z., Ahuja S. and Rowley C., “Reduced Order Models for Control of Fluids Using the Eigensystem Realization Algorithm,” Theoretical and Computational Fluid Dynamics, Vol. 25, Nos. 1–4, 2011, pp. 233–247. doi: TCFDEP 0935-4964 CrossrefGoogle Scholar

  • [17] Wales C., Jones D. and Gaitonde A., “Prescribed Velocity Method for Simulation of Aerofoil Gust Responses,” Journal of Aircraft, Vol. 52, No. 1, 2015, pp. 64–76. doi: LinkGoogle Scholar

  • [18] Gaitonde A. L. and Jones D. P., “Study of Linear Response Identification Techniques and Reduced-Order Model Generation for a 2D CFD Scheme,” International Journal for Numerical Methods in Fluids, Vol. 52, No. 12, 2006, pp. 1361–1402. doi: IJNFDW 0271-2091 CrossrefGoogle Scholar

  • [19] Gerhold T., Friedrich O., Evans J. and Galle M., “Calculation of Complex Three-Dimensional Configurations Employing the DLR-TAU-Code,” AIAA Paper  1997-0167, Jan. 1997. LinkGoogle Scholar

  • [20] Galle M., Gerhold T. and Evans J., “Parallel Computation of Turbulent Flows Around Complex Geometries on Hybrid Grids with the DLR-TAU Code,” Proceedings of the 11th Parallel CFD Conference, edited by Ecer A. and Emerson D. R., Elsevier Science, Amsterdam, The Netherlands, May 1999, pp. 223–230. Google Scholar

  • [21] Wales C., Jones D. and Gaitonde A., “Reduced Order Modelling for Aeroelastic Aerofoil Response to a Gust,” AIAA Paper  2013-0790, Jan. 2013. LinkGoogle Scholar

  • [22] Jones D. and Gaitonde A., “Future Fast Methods for Loads Calculations: The FFAST Project,” Innovation for Sustainable Aviation in a Global Environment Proceedings of Aerodays, IOS Press BV, Madrid, March–April 2011, pp. 110–115. Google Scholar

  • [23] Wales C., Gaitonde A. and Jones D., “Stabilisation of Reduced Order Models via Restarting,” International Journal for Numerical Methods in Fluids, Vol. 73, No. 6, 2013, pp. 578–599. doi: IJNFDW 0271-2091 CrossrefGoogle Scholar

  • [24] Giesing J. P., Kalman T. P. and Rodden W. P., “Correction Factor Techniques for Improving Aerodynamic Prediction Methods,” NASA CR-144967, 1976. Google Scholar