Skip to main content
Skip to article control options
No AccessFull-Length Papers

New Robust Method to Study Flight Flutter Testing

Published Online:https://doi.org/10.2514/1.C034863

This paper presents the application of a new method, called higher-order dynamic mode decomposition (HODMD), to extract aircraft frequencies and damping in experimental data obtained from a flight flutter test. The method is an extension of standard dynamic mode decomposition, which is a method typically used to extract flow patterns and frequencies from unsteady fluid dynamics measurements or numerical simulations. In the fluid dynamic field, HODMD has proven to be a very efficient, robust, and accurate method to extract modes, frequencies, and damping from very noisy and large signals, with reduced manual interaction. In a similar way, this paper shows the good performance of this method when it is applied to the noisy data of this complex experiment. This fact sheds light on the new possibilities for the aerospace industry to incorporate HODMD to perform robust analyses.

References

  • [1] Schwanz R. C. and Wells W., “Identification of Aeroelastic Parameters Using a Recursive Sequential Least Squares Method,” Proceedings of the 6th Atmospheric Flight Mechanics Conference, AIAA Paper 1980-1634, 1980. LinkGoogle Scholar

  • [2] Bennett R. M. and Abel I., “Flight Flutter Test and Data Analysis Techniques Applied to a Drone Aircraft,” Journal of Aircraft, Vol. 19, No. 7, 1982, pp. 589–595. doi:https://doi.org/10.2514/3.57433 LinkGoogle Scholar

  • [3] Nissim E. and Gilyard G., “Method for Experimental Determination of Flutter Speed by Parameter Identification,” Proceedings of the 30th Structures, Structural Dynamics and Materials Conference, AIAA Paper 1989-1324, 1989. LinkGoogle Scholar

  • [4] Cooper J., “Parameter Estimation Methods for Flight Flutter Testing,” Proceedings of the 80th AGARD Structures and Materials Panel, AGARD CP-566, Neuilly-Sur-Seine, France, 1995, pp. 10.1–10.12. Google Scholar

  • [5] Brenner M. J., Lind R. C. and Voracek D. F., “Overview of Recent Flight Flutter Testing Research at NASA Dryden,” NASA TM 4792, April 1997. LinkGoogle Scholar

  • [6] Feron E., Brenner M., Paduano J. and Turevskiy A., “Time- Frequency Analysis for Transfer Function Estimation and Application to Flutter Clearance,” Journal of Guidance, Control, and Dynamics, Vol. 21, No. 3, 1998, pp. 375–382. doi:https://doi.org/10.2514/2.4269 JGCODS 0731-5090 LinkGoogle Scholar

  • [7] Turevskiy A., Feron E. and Paduano J., “Flutter Boundary Prediction Using Physical Models and Experimental Data,” Journal of Guidance, Control, and Dynamics, Vol. 22, No. 1, 1999, pp. 168–171. doi:https://doi.org/10.2514/2.7621 JGCODS 0731-5090 LinkGoogle Scholar

  • [8] Pickrel C. R. and White P. J., “Flight Flutter Testing of Transport Aircraft: In-Flight Modal Analysis,” Proceedings of the IMAC International Modal Analysis Conference, Kissimmee, FL 2003. Google Scholar

  • [9] Li X. and Brenner M., “Practical Aeroservoelasticity In-Flight Identification and Adaptive Control,” Proceedings of AIAA Atmospheric Flight Mechanics Conference, AIAA Paper 2010-7502, 2010. LinkGoogle Scholar

  • [10] Matsuzaki Y. and Torii H., “Flutter-Boundary Prediction of a Morphing Wing in the Process of Adaptation,” AIAA Journal, Vol. 50, No. 6, 2012, pp. 1257–1264. doi:https://doi.org/10.2514/1.J051202 AIAJAH 0001-1452 LinkGoogle Scholar

  • [11] Kehoe M. W., “A Historical Overview of Flight Flutter Testing,” NASA TM 4720, 1995. Google Scholar

  • [12] Ruhlin C. L., Atson J., Ricketts R. H. and Doggett R. V., “Evaluation of Four Subcritical Response Methods for On-Line Prediction of Flutter Onset in Wind Tunnel Tests,” Journal of Aircraft, Vol. 20, No. 10, 1983, pp. 835–840. doi:https://doi.org/10.2514/3.44951 LinkGoogle Scholar

  • [13] Dimitriadis G. and Cooper J. E., “Flutter Prediction from Flight Flutter Test Data,” Journal of Aircraft, Vol. 38, No. 2, 2001, pp. 355–367. doi:https://doi.org/10.2514/2.2770 LinkGoogle Scholar

  • [14] Dimitriadis G. and Cooper J. E., “Comment on “Flutter Prediction from Flight Flutter Test Data,” Journal of Aircraft, Vol. 43, No. 3, 2006, pp. 862–863. doi:https://doi.org/10.2514/1.C9463TC LinkGoogle Scholar

  • [15] Lind R., “Comment on ‘Flight-Test Evaluation of Flutter Prediction Methods’,” Journal of Aircraft, Vol. 40, No. 5, 2003, pp. 964–970. doi:https://doi.org/10.2514/2.6881 LinkGoogle Scholar

  • [16] Zeng J. and Kukreja S. L., “Flutter Prediction for Flight/Wind-Tunnel Flutter Test Under Atmospheric Turbulence Excitation,” Journal of Aircraft, Vol. 50, No. 6, 2013, pp. 1696–1709. doi:https://doi.org/10.2514/1.C031710 LinkGoogle Scholar

  • [17] Follador R., de Souza C. E., da Silva R. G. A. and Góes L. C. S., “Comparison of In-Flight Measured and Computed Aeroelastic Damping: Modal Identification Procedures and Modeling Approaches,” Journal of Aerospace Technology Management, Vol. 8, No. 2, 2016, pp. 163–177. doi:https://doi.org/10.5028/jatm.v8i2.558 CrossrefGoogle Scholar

  • [18] Hammond C. E. and Dogget R. V., “Determination of Subcritical Damping by Moving-Block/Randomdec Applications,” Flutter Testing Techniques, NASA Scientific and Technical Information Office, Washington, D.C., 1975, pp. 59–76. Google Scholar

  • [19] Benett R. G. and Desmarais R., “Curve-Fitting of Aeroelastic Transient Response Data with Exponential Functions,” Flutter Testing Techniques, NASA SP-415, 1976, pp. 43–58. Google Scholar

  • [20] Kukreja S. L. and Brenner M. J., “Nonlinear Aeroelastic System Identification with Application to Experimental Data,” Journal of Guidance, Control, and Dynamics, Vol. 29, No. 2, 2006, pp. 374–381. doi:https://doi.org/10.2514/1.15178 LinkGoogle Scholar

  • [21] Kukreja S. L. and Brenner M. J., “Nonlinear Black-Box Modeling of Aeroelastic Systems Using Structure Detection: Application to F/A-18 Data,” Journal of Guidance, Control, and Dynamics, Vol. 30, No. 2, 2007, pp. 557–564. doi:https://doi.org/10.2514/1.20835 LinkGoogle Scholar

  • [22] Onoda J., “Estimation of Dynamic Characteristics of a Wing from the Random Response to Turbulence,” Journal of the Japan Society for Aeronautical and Space Sciences, Vol. 26, No. 299, 1978, pp. 649–656. doi:https://doi.org/10.2322/jjsass1969.26.649 NKGAB8 0021-4663 CrossrefGoogle Scholar

  • [23] Matsuzaki Y. and Ando Y., “Estimation of Flutter Boundary from Random Responses due to Turbulence at Subcritical Speeds,” Journal of Aircraft, Vol. 18, No. 10, 1981, pp. 862–868. doi:https://doi.org/10.2514/3.44737 LinkGoogle Scholar

  • [24] Taylor P. M., Moreno Ramos R., Banavara N., Narisetti R. K. and Morgan L., “Flight Flutter Testing at Gulfstream Aerospace Using Advances Signal Processing Techniques,” Proceedings of the 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper 2017-1823, 2017. LinkGoogle Scholar

  • [25] McNamara J. J. and Friedmann P. P., “Flutter-Boundary Identification for Time-Domain Computational Aeroelasticity,” AIAA Journal, Vol. 45, No. 7, 2007, pp. 1546–1555. doi:https://doi.org/10.2514/1.26706 AIAJAH 0001-1452 LinkGoogle Scholar

  • [26] Schmid P., “Dynamic Mode Decomposition of Numerical and Experimental Data,” Journal of Fluid Mechanics, Vol. 656, Aug. 2010, pp. 5–28. doi:https://doi.org/10.1017/S0022112010001217 JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [27] Koopman B., “Hamiltonian Systems and Transformations in Hilbert Space,” Proceedings of the National Academy of Science USA, Vol. 17, 1931, pp. 315–318. CrossrefGoogle Scholar

  • [28] Le Clainche S., Li I. J., Theofilis V. and Soria J., “Flow Around a Hemisphere-Cylinder at High Angle of Attack and Low Reynolds Number Part I: Experimental and Numerical Investigation,” Aerospace Sciences and Technology, Vol. 44, 2015, pp. 77–87. doi:https://doi.org/10.1016/j.ast.2014.03.017 CrossrefGoogle Scholar

  • [29] Le Clainche S., Rodríguez D., Theofilis V. and Soria J., “Flow Around a Hemisphere-Cylinder at High Angle of Attack and Low Reynolds Number. Part II: POD and DMD Applied to Reduced Domains,” Aerospace Sciences and Technology, Vol. 44, 2015, pp. 88–100. doi:https://doi.org/10.1016/j.ast.2014.10.009 CrossrefGoogle Scholar

  • [30] Gómez F., Le Clainche S., Paredes P., Hermanns M. and Theofilis V., “Four Decades of Studying Global Linear Instability: Progress and Challenges,” AIAA Journal, Vol. 50, No. 12, 2012, pp. 2731–2743. doi:https://doi.org/10.2514/1.J051527 AIAJAH 0001-1452 LinkGoogle Scholar

  • [31] Le Clainche S., Vega J. M. and Soria J., “Higher Order Dynamic Mode Decomposition for Noisy Experimental Data: Flow Structures on a Zero-Net-Mass-Flux Jet,” Experimental Thermal and Fluid Science, Vol. 88, Nov. 2017, pp. 336–353. doi:https://doi.org/10.1016/j.expthermflusci.2017.06.011 ETFSEO 0894-1777 CrossrefGoogle Scholar

  • [32] Le Clainche S. and Vega J. M., “Higher Order Dynamic Mode Decomposition,” SIAM Journal on Applied Dynamical Systems, Vol. 16, No. 2, 2017, pp. 882–925. doi:https://doi.org/10.1137/15M1054924 SJADAY 1536-0040 CrossrefGoogle Scholar

  • [33] Sirovich L., “Turbulence and the Dynamics of Coherent Structures. Parts I–III,” Quarterly of Applied Mathematics, Vol. 45, No. 3, 1987, pp. 561–571. doi:https://doi.org/10.1090/qam/1987-45-03 QAMAAY 0033-569X CrossrefGoogle Scholar

  • [34] Schmid P., “Application of the Dynamic Mode Decomposition to Experimental Data,” Experiments in Fluids, Vol. 50, No. 4, 2011, pp. 1123–1130. doi:https://doi.org/10.1007/s00348-010-0911-3 EXFLDU 0723-4864 CrossrefGoogle Scholar