Skip to main content
Skip to article control options
No AccessFull-Length Paper

Output Feedback Adaptive Control with Low-Frequency Learning and Fast Adaptation

Published Online:https://doi.org/10.2514/1.G001130

Although adaptive control has been used in numerous applications to achieve system performance without excessive reliance on system models, the necessity of high-gain learning rates for achieving fast adaptation can be a serious limitation of adaptive controllers. Specifically, in safety-critical systems involving large system uncertainties and abrupt changes in system dynamics, fast adaptation is required to achieve stringent tracking performance specifications. However, fast adaptation using high-gain learning rates can cause high-frequency oscillations in the control response, resulting in system instability. This paper develops an output feedback adaptive control framework for continuous-time minimum-phase multivariable dynamical systems for output stabilization and command following to address the problem of achieving fast adaptation using high-gain learning rates for systems with partial state information. The proposed framework uses a controller architecture involving a modification term in the update law that filters out the high-frequency content in the control response while preserving uniform boundedness of the system error dynamics. The approach is based on a nonminimal state-space realization that generates an expanded set of states using the filtered inputs and filtered outputs, as well as their derivatives, of the original system, and requires knowledge of only the open-loop system’s relative degree and a bound on the system’s order.

References

  • [1] Osburn P., Whitaker H. and Kezer A., “New Developments in the Design of Adaptive Control Systems,” Inst. of Aeronautical Sciences Paper  61-39, Washington, D.C., 1961. Google Scholar

  • [2] Whitaker H. P., Yamron J. and Kezer A., Design of Model Reference Control Systems for Aircraft, Instrumentation Lab., Massachusetts Inst. of Technology, Cambridge, MA, 1958. Google Scholar

  • [3] Johnson E. N. and Calise A. J., “Limited Authority Adaptive Flight Control for Reusable Launch Vehicles,” Journal of Guidance, Control, and Dynamics, Vol. 26, No. 6, 2003, pp. 906–913. doi:https://doi.org/10.2514/2.6934 JGCDDT 0162-3192 LinkGoogle Scholar

  • [4] Dydek Z. T., Annaswamy A. M. and Lavretsky E., “Adaptive Control and the NASA x-15-3 Flight Revisited,” IEEE Control Systems, Vol. 30, No. 3, 2010, pp. 32–48. doi:https://doi.org/10.1109/MCS.2010.936292 ISMAD7 0272-1708 CrossrefGoogle Scholar

  • [5] Rohrs C. E., Valavani L., Athans M. and Stein G., “Robustness of Continuous-Time Adaptive Control Algorithms in the Presence of Unmodeled Dynamics,” IEEE Transactions on Automatic Control, Vol. 30, No. 9, 1985, pp. 881–889. doi:https://doi.org/10.1109/TAC.1985.1104070 IETAA9 0018-9286 CrossrefGoogle Scholar

  • [6] Lavretsky E. and Wise K. A., Robust and Adaptive Control, Springer–Verlag, London, 2013. doi:https://doi.org/10.1007/978-1-4471-4396-3 CrossrefGoogle Scholar

  • [7] Hovakimyan N. and Cao C., L1 Adaptive Control Theory: Guaranteed Robustness with Fast Adaptation, Soc. for Industrial and Applied Mathematics, Philadelphia, 2010, doi:https://doi.org/10.1137/1.9780898719376 CrossrefGoogle Scholar

  • [8] Yucelen T. and Haddad W. M., “Low-Frequency Learning and Fast Adaptation in Model Reference Adaptive Control,” IEEE Transactions on Automatic Control, Vol. 58, No. 4, 2013, pp. 1080–1085. doi:https://doi.org/10.1109/TAC.2012.2218667 IETAA9 0018-9286 CrossrefGoogle Scholar

  • [9] Gibson T. E., Annaswamy A. M. and Lavretsky E., “On Adaptive Control with Closed-Loop Reference Models: Transients, Oscillations, and Peaking,” IEEE Access, Vol. 1, Sept. 2013, pp. 703–717. doi:https://doi.org/10.1109/ACCESS.2013.2284005 CrossrefGoogle Scholar

  • [10] Yucelen T. and Haddad W. M., “A Robust Adaptive Control Architecture for Disturbance Rejection and Uncertainty Suppression with L Transient and Steady-State Performance Guarantees,” International Journal of Adaptive Control and Signal Processing, Vol. 26, No. 11, 2012, pp. 1024–1055. doi:https://doi.org/10.1002/acs.2281 CrossrefGoogle Scholar

  • [11] Gibson T. E., Annaswamy A. M. and Lavretsky E., “Closed-Loop Reference Models for Output-Feedback Adaptive Systems,” Proceedings of the European Control Conference, Plenum Press, New York, 2013, pp. 365–370. Google Scholar

  • [12] Goodwin G. C., Ramadge P. J. and Caines P. E., “Discrete-Time Multivariable Adaptive Control,” IEEE Transactions on Automatic Control, Vol. 25, No. 3, 1980, pp. 449–456. doi:https://doi.org/10.1109/TAC.1980.1102363 IETAA9 0018-9286 CrossrefGoogle Scholar

  • [13] Ioannou P. A. and Tsakalis K. S., “A Robust Direct Adaptive Controller,” IEEE Transactions on Automatic Control, Vol. 31, No. 1, 1986, pp. 1033–1043. doi:https://doi.org/10.1109/TAC.1986.1104168 IETAA9 0018-9286 CrossrefGoogle Scholar

  • [14] Krstic M., Kanellakopoulos I. and Kokotovic P., Nonlinear and Adaptive Control Design, Wiley, New York, 1995. Google Scholar

  • [15] Ioannou P. A. and Sun J., Robust Adaptive Control, Prentice–Hall, Englewood Cliffs, NJ, 1996. Google Scholar

  • [16] Lewis F. L., Yesildirek A. and Liu K., “Multilayer Neural-Net Robot Controller with Guaranteed Tracking Performance,” IEEE Transactions on Neural Networks, Vol. 7, No. 2, 1996, pp. 388–399. doi:https://doi.org/10.1109/72.485674 ITNNEP 1045-9227 CrossrefGoogle Scholar

  • [17] Ge S. S., Hang C. C. and Zhang T., “Adaptive Neural Network Control of Nonlinear Systems by State and Output Feedback,” IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, Vol. 29, No. 6, 1999, pp. 818–828. doi:https://doi.org/10.1109/3477.809035 CrossrefGoogle Scholar

  • [18] Seshagiri S. and Khalil H. K., “Output Feedback Control of Nonlinear Systems Using RBF Neural Networks,” IEEE Transactions on Neural Networks, Vol. 11, No. 1, 2000, pp. 69–79. doi:https://doi.org/10.1109/72.822511 ITNNEP 1045-9227 CrossrefGoogle Scholar

  • [19] Calise A. J., Hovakimyan N. and Idan M., “Adaptive Output Feedback Control of Nonlinear Systems Using Neural Networks,” Automatica, Vol. 37, No. 8, 2001, pp. 1201–1211. doi:https://doi.org/10.1016/S0005-1098(01)00070-X ATCAA9 0005-1098 CrossrefGoogle Scholar

  • [20] Hovakimyan N., Nardi F., Calise A. J. and Kim N., “Adaptive Output Feedback Control of Uncertain Nonlinear Systems Using Single Hidden Layer Neural Networks,” IEEE Transactions on Neural Networks, Vol. 13, No. 6, 2002, pp. 1420–1431. doi:https://doi.org/10.1109/TNN.2002.804289 ITNNEP 1045-9227 CrossrefGoogle Scholar

  • [21] Cao C. and Hovakimyan N., “L1 Adaptive Output Feedback Controller for Systems of Unknown Dimension,” IEEE Transactions on Automatic Control, Vol. 53, No. 3, 2008, pp. 815–821. doi:https://doi.org/10.1109/ACC.2007.4282999 IETAA9 0018-9286 CrossrefGoogle Scholar

  • [22] Hoagg J. B., Santillo M. A. and Bernstein D. S., “Discrete-Time Adaptive Command Following and Disturbance Rejection with Unknown Exogenous Dynamics,” IEEE Transactions on Automatic Control, Vol. 53, No.  4, 2008, pp. 912–928. doi:https://doi.org/10.1109/TAC.2008.920234 IETAA9 0018-9286 CrossrefGoogle Scholar

  • [23] Volyanskyy K. Y., Haddad W. M. and Calise A. J., “A New Neuroadaptive Control Architecture for Nonlinear Uncertain Dynamical Systems: Beyond σ- and e-Modifications,” IEEE Transactions on Neural Networks, Vol. 20, No. 11, 2009, pp. 1707–1723. doi:https://doi.org/10.1109/CDC.2008.4739101 ITNNEP 1045-9227 CrossrefGoogle Scholar

  • [24] Yucelen T. and Haddad W. M., “Output Feedback Adaptive Stabilization and Command Following for Minimum Phase Dynamical Systems with Unmatched Uncertainties and Disturbances,” International Journal of Control, Vol. 85, No. 6, 2012, pp. 706–721. doi:https://doi.org/10.1080/00207179.2012.662721 IJCOAZ 0020-7179 CrossrefGoogle Scholar

  • [25] Pomet J. B. and Praly L., “Adaptive Nonlinear Regulation: Estimation from the Lyapunov Equation,” IEEE Transactions on Automatic Control, Vol. 37, No. 6, 1992, pp. 729–740. doi:https://doi.org/10.1109/9.256328 IETAA9 0018-9286 CrossrefGoogle Scholar

  • [26] Antsaklis P. J. and Michel A. N., Linear Systems, Birkhäuser, Boston, 2005. Google Scholar

  • [27] Haddad W. M. and Chellaboina V., Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach, Princeton Univ. Press, Princeton, NJ, 2008. CrossrefGoogle Scholar

  • [28] Butchart R. and Shackcloth B., “Synthesis of Model Reference Adaptive Control System by Lyapunov’s Second Method,” Proceedings of the IFAC Symposium on Adaptive Control, Teddington, England, U.K., pp. 145–152. Google Scholar

  • [29] Yucelen T. and Calise A. J., “Kalman Filter Modification in Adaptive Control,” Journal of Guidance, Control, and Dynamics, Vol. 33, No. 2, 2010, pp. 426–439. doi:https://doi.org/10.2514/1.45307 JGCDDT 0162-3192 LinkGoogle Scholar

  • [30] Ioannou P. and Kokotovic P., “Instability Analysis and Improvement of Robustness of Adaptive Control,” Automatica, Vol. 20, No. 5, 1984, pp. 583–594. doi:https://doi.org/10.1016/0005-1098(84)90009-8 ATCAA9 0005-1098 CrossrefGoogle Scholar

  • [31] Narendra K. S. and Annaswamy A. M., “A New Adaptive Law for Robust Adaptation Without Persistent Excitation,” IEEE Transactions on Automatic Control, Vol. 32, No. 2, 1987, pp. 134–145. doi:https://doi.org/10.1109/TAC.1987.1104543 IETAA9 0018-9286 CrossrefGoogle Scholar

  • [32] Calise A. J. and Yucelen T., “Adaptive Loop Transfer Recovery,” Journal of Guidance, Control, and Dynamics, Vol. 34, No. 3, 2012, pp. 807–815. doi:https://doi.org/10.2514/1.55835 JGCDDT 0162-3192 LinkGoogle Scholar

  • [33] Nelson R. C., Flight Stability and Automatic Control, 2nd ed., WCB/McGraw–Hill, New York, 1998. Google Scholar

  • [34] Bryson A. E., Control of Spacecraft and Aircraft, Princeton Univ. Press, Princeton, NJ, 1994. CrossrefGoogle Scholar