Skip to main content
Skip to article control options
No Access

Analytical Uncertainty Propagation for Satellite Relative Motion Along Elliptic Orbits

Published Online:https://doi.org/10.2514/1.G001848

For satellites flying in close proximity, monitoring the uncertainties of neighboring satellites’ states is a crucial task because the uncertainty information is used to compute the collision probability between satellites with the objective of collision avoidance. In this study, an analytical closed-form solution is developed for uncertainty propagation in the satellite relative motion near general elliptic orbits. The Tschauner–Hempel equations are used to describe the linearized relative motion of the deputy satellite where the chief orbit is eccentric. Under the assumption of the linearized relative motion and white Gaussian process noise, the uncertainty propagation problem is defined to compute the mean and covariance matrix of the relative states of the deputy satellite. The evolution of the mean and covariance matrix is governed by a linear time-varying differential equation, for which the solution requires the integration of the quadratic function of the inverse of the fundamental matrix associated to the Tschauner–Hempel equations. The difficulties in evaluating the integration are alleviated by the introduction of an adjoint system to the Tschauner–Hempel equations and the binomial series expansion. The accuracy of the developed analytical solution is demonstrated in illustrative numerical examples by comparison with a Monte Carlo analysis.

References

  • [1] Keeping the Space Environment Safe for Civil and Commercial Users,” House of Representative, Subcommittee on Space and Aeronautics, Committee on Science and Technology, Washington, D.C., 2009. Google Scholar

  • [2] Baird M. A., “Maintaining Space Situational Awareness and Taking It to the Next Level,” Air and Space Power Journal, Vol. 27, No. 5, 2013, pp. 50–72. Google Scholar

  • [3] Erwin R. S., Albuquerque P., Jayaweera S. K. and Hussein I., “Dynamic Sensor Tasking for Space Situational Awareness,” Proceedings of American Control Conference, IEEE Publ., Piscataway, NJ, 2010. doi:https://doi.org/10.1109/ACC.2010.5530989 Google Scholar

  • [4] Hoots F. R., Schumacher P. W. and Glover R. A., “History of Analytical Orbit Modeling in the U.S. Space Surveillance System,” Journal of Guidance, Control, and Dynamics, Vol. 27, No. 2, 2004, pp. 174–185. doi:https://doi.org/10.2514/1.9161 LinkGoogle Scholar

  • [5] Alfriend K. T., Breger L. S., Gurfil P., Vadali S. R. and How J. P., Spacecraft Formation Flying: Dynamics, Control, and Navigation, Elsevier, Oxford, England, U.K., 2010, Chap. 1. CrossrefGoogle Scholar

  • [6] Armellin R., Massari M. and Finzi A. E., “Optimal Formation Flying Reconfiguration and Station Keeping Maneuvers Using Low Thrust Propulsion,” Proceedings of the 18th International Symposium on Space Flight Dynamics, Deutsches Zentrum fuer Luft- und Raumfahrt e. V. (DLR), Cologne, Germany, 2004, pp. 429–434. Google Scholar

  • [7] Lee S. and Park S.-Y., “Approximate Analytical Solutions to Optimal Reconfiguration Problems in Perturbed Satellite Relative Motion,” Journal of Guidance, Control, and Dynamics, Vol. 34, No. 4, 2011, pp. 1097–1110. doi:https://doi.org/10.2514/1.52283 LinkGoogle Scholar

  • [8] Patera R. P., “Space Vehicle Conflict-Avoidance Analysis,” Journal of Guidance, Control, and Dynamics, Vol. 30, No. 2, 2007, pp. 492–498. doi:https://doi.org/10.2514/1.24067 LinkGoogle Scholar

  • [9] DeMars K. J., Cheng Y. and Jah M. K., “Collision Probability with Gaussian Mixture Orbit Uncertainty,” Journal of Guidance, Control, and Dynamics, Vol. 37, No. 3, 2014, pp. 979–984. doi:https://doi.org/10.2514/1.62308 LinkGoogle Scholar

  • [10] Terejanu G., Singla P., Singh T. and Scott P. D., “Uncertainty Propagation for Nonlinear Dynamic Systems Using Gaussian Mixture Models,” Journal of Guidance, Control, and Dynamics, Vol. 31, No. 6, 2008, pp. 1623–1633. doi:https://doi.org/10.2514/1.36247 LinkGoogle Scholar

  • [11] Vishwajeet K., Singla P. and Jah M. K., “Nonlinear Uncertainty Propagation for Perturbed Two-Body Orbits,” Journal of Guidance, Control, and Dynamics, Vol. 37, No. 5, 2014, pp. 1415–1425. doi:https://doi.org/10.2514/1.G000472 LinkGoogle Scholar

  • [12] Horwood J., Aragon N. and Poore A., “Gaussian Sum Filters for Space Surveillance: Theory and Simulations,” Journal of Guidance, Control, and Dynamics, Vol. 34, No. 6, 2011, pp. 1839–1851. doi:https://doi.org/10.2514/1.53793 LinkGoogle Scholar

  • [13] DeMars K. J., Bishop R. H. and Jah M. K., “Entropy-Based Approach for Uncertainty Propagation of Nonlinear Dynamical Systems,” Journal of Guidance, Control, and Dynamics, Vol. 36, No. 4, 2013, pp. 1047–1057. doi:https://doi.org/10.2514/1.58987 LinkGoogle Scholar

  • [14] Fujimoto K., Scheeres D. J. and Alfriend K. T., “Analytical Nonlinear Propagation of Uncertainty in the Two-Body Problem,” Journal of Guidance, Control, and Dynamics, Vol. 35, No. 2, 2012, pp. 497–509. doi:https://doi.org/10.2514/1.54385 LinkGoogle Scholar

  • [15] Slater G. L., Byram S. M. and Williams T. W., “Collision Avoidance for Satellites in Formation Flight,” Journal of Guidance, Control, and Dynamics, Vol. 29, No. 5, 2006, pp. 1140–1146. doi:https://doi.org/10.2514/1.16812 LinkGoogle Scholar

  • [16] Lee S. and Hwang I., “Analytical Solutions to Uncertainty Propagation in Satellite Relative Motion,” AIAA Guidance, Navigation, and Control Conference, AIAA Paper  2013-5190, 2013, doi:https://doi.org/10.2514/6.2013-5190 LinkGoogle Scholar

  • [17] Carter T. E., “Optimal Power-Limited Rendezvous for Linearized Equations of Motion,” Journal of Guidance, Control, and Dynamics, Vol. 17, No. 5, 1994, pp. 1082–1086. doi:https://doi.org/10.2514/3.21313 LinkGoogle Scholar

  • [18] Okasha M. and Newman B., “Guidance, Navigation and Control for Satellite Proximity Operations Using Tschauner-Hempel Equations,” Journal of the Astronautical Sciences, Vol. 60, No. 1, 2013, pp. 109–136. doi:https://doi.org/10.1007/s40295-014-0024-y CrossrefGoogle Scholar

  • [19] de Veries J. P., “Elliptic Elements in Terms of Small Increments of Position and Velocity Components,” AIAA Journal, Vol. 1, No. 11, 1963, pp. 2626–2629. doi:https://doi.org/10.2514/3.2124 LinkGoogle Scholar

  • [20] Battin R. H., An Introduction to the Mathematics and Methods of Astrodynamics, AIAA Education Series, AIAA, Reston, VA, 1999, Chap. 3. doi:https://doi.org/10.2514/4.861543 LinkGoogle Scholar

  • [21] Tschauner J. and Hempel P., “Rendezvous zu ein Min in Elliptischer Bahn Umlaufenden Ziel,” Astronautical Acta, Vol. 11, No. 2, 1965, pp. 104–109. Google Scholar

  • [22] Vallado D. A., Fundamentals of Astrodynamics and Application, Microcosm Press, Hawthorne, CA, 2001, Chaps. 1, 2. Google Scholar

  • [23] Yamanaka K. and Ankersen F., “New State Transition Matrix for Relative Motion on an Arbitrary Elliptical Orbit,” Journal of Guidance, Control, and Dynamics, Vol. 25, No. 1, 2002, pp. 60–66. doi:https://doi.org/10.2514/2.4875 LinkGoogle Scholar

  • [24] Campbell M. E., “Collision Monitoring Within Satellite Clusters,” IEEE Transactions on Control System Technology, Vol. 13, No. 1, 2005, pp. 42–55. doi:https://doi.org/10.1109/tcst.2004.838550 CrossrefGoogle Scholar

  • [25] Maybeck P. S., Stochastic Models, Estimation, and Control, Academic Press, San Diego, CA, 1979, Chap. 4. Google Scholar

  • [26] Bryson A. E. and Ho Y.-C., Applied Optimal Control, Taylor and Francis, New York, 1975, Chap. 10. Google Scholar

  • [27] Hogg R. V., McKean J. and Craig A. T., Introduction to Mathematical Statistics, 7th ed., Pearson, London, 2012, Chap. 3. Google Scholar

  • [28] Carter T. E., “State Transition Matrices for Terminal Rendezvous Studies: Brief Survey and New Example,” Journal of Guidance, Control, and Dynamics, Vol. 21, No. 1, 1998, pp. 148–155. doi:https://doi.org/10.2514/2.4211 LinkGoogle Scholar

  • [29] Cho H.-C., Park S.-Y. and Choi K.-H., “Application of Analytic Solution in Relative Motion to Spacecraft Formation Flying in Elliptic Orbit,” Journal of Astronomy and Space Science, Vol. 25, No. 3, 2008, pp. 255–266. doi:https://doi.org/10.5140/JASS.2008.25.3.255 CrossrefGoogle Scholar

  • [30] Sinclair A. J., Sherrill R. E. and Lovell T. A., “Geometric Interpretation of the Tschauner–Hempel Solutions for Satellite Relative Motion,” Advances in Space Research, Vol. 55, No. 9, 2015, pp. 2268–2279. doi:https://doi.org/10.1016/j.asr.2015.01.032 CrossrefGoogle Scholar