Skip to main content
Skip to article control options
No AccessFull-Length Paper

Robust Planning of Nonlinear Rendezvous with Uncertainty

Published Online:https://doi.org/10.2514/1.G002319

Practical uncertainties are not considered by optimal rendezvous trajectory designs proposed in many current studies. In this study, a robust optimization method for on-ground rendezvous trajectory design is proposed by considering the uncertainties and orbital replanning process. Two robust performance indices related to the final rendezvous errors and the total velocity increment Δv are first defined, then a multi-objective optimization model (including the minimum Δv and minimum rendezvous errors) is formulated. The unscented transformation method is used to efficiently compute the robust indices in optimization process, and a multi-objective, nondominated sorting genetic algorithm is employed to obtain a Pareto-optimal solution set. It is shown that the proposed approach can be used to design a rendezvous trajectory with the Δv and final rendezvous errors that are both robust against uncertainties. Furthermore, the proposed approach can identify the most preferable design space in which specific solutions for practical application of rendezvous control are selected.

References

  • [1] Jezewski D. J., Brazzel J. P., Prust E. E., Brown B. G., Mulder T. A. and Wissinger D. B., “A Survey of Rendezvous Trajectory Planning,” AAS/AIAA Astrodynamics Specialist Conference, American Astronautical Soc. Paper  91-505, Springfield, VA, 1991. Google Scholar

  • [2] Luo Y. Z., Zhang J. and Tang G. J., “Survey of Orbital Dynamics and Control of Space Rendezvous,” Chinese Journal of Aeronautics, Vol. 27, No. 1, 2014, pp. 1–11. doi:https://doi.org/10.1016/j.cja.2013.07.042 CJAEEZ 1000-9361 CrossrefGoogle Scholar

  • [3] Lion P. M. and Handelsman M., “Primer Vector on Fixed-Time Impulsive Trajectories,” AIAA Journal, Vol. 6, No. 1, 1968, pp. 127–132. doi:https://doi.org/10.2514/3.4452 AIAJAH 0001-1452 LinkGoogle Scholar

  • [4] Battin R. H., An Introduction to the Mathematics and Methods of Astrodynamics, AIAA Education Series, AIAA, Reston, VA, 1999, pp. 681–699. LinkGoogle Scholar

  • [5] Vallado D. A., Fundamentals of Astrodynamics and Applications, 3rd ed., Microscosm Press, Hawthorne, CA, 2007, pp. 465–535. Google Scholar

  • [6] Jezewski D. J. and Rozendaal H. L., “An Efficient Method for Calculating Optimal Free-Space N-Impulse Trajectories,” AIAA Journal, Vol. 6, No. 11, 1968, pp. 2160–2165. doi:https://doi.org/10.2514/3.4949 AIAJAH 0001-1452 LinkGoogle Scholar

  • [7] Prussing J. E. and Chiu J. H., “Optimal Multiple-Impulse Time-Fixed Rendezvous Between Circular Orbits,” Journal of Guidance, Control, and Dynamics, Vol. 9, No. 1, 1986, pp. 17–22. doi:https://doi.org/10.2514/3.20060 JGCODS 0731-5090 LinkGoogle Scholar

  • [8] Prussing J. E., “A Class of Optimal Two-Impulse Rendezvous Using Multiple-Revolution Lambert Solutions,” Journal of Astronautical Sciences, Vol. 48, No. 2, 2000, pp. 131–148. CrossrefGoogle Scholar

  • [9] Hughes S. P., Mailhe L. M. and Guzman J. J., “A Comparison of Trajectory Optimization Methods for the Impulsive Minimum Propellant Rendezvous Problem,” Advances in the Astronautical Sciences, Vol. 113, Univelt, San Diego, CA, 2003, pp. 85–104. Google Scholar

  • [10] Woollands R. M., Younes A. B. and Junkins J. L., “New Solutions for the Perturbed Lambert Problem Using Regularization and Picard Iteration,” Journal of Guidance, Control, and Dynamics, Vol. 38, No. 9, 2015, pp. 1548–1562. doi:https://doi.org/10.2514/1.G001028 JGCODS 0731-5090 LinkGoogle Scholar

  • [11] Arora N., Russell R. P., Strange N. and Ottesen D., “Partial Derivatives of the Solution to the Lambert Boundary Value Problem,” Journal of Guidance, Control, and Dynamics, Vol. 38, No. 9, 2015, pp. 1563–1572. doi:https://doi.org/10.2514/1.G001030 JGCODS 0731-5090 LinkGoogle Scholar

  • [12] Yang Z., Luo Y. Z., Zhang J. and Tang G. J., “Homotopic Perturbed Lambert Algorithm for Long-Duration Rendezvous Optimization,” Journal of Guidance, Control, and Dynamics, Vol. 38, No. 11, 2015, pp. 2215–2223. doi:https://doi.org/10.2514/1.G001198 JGCODS 0731-5090 LinkGoogle Scholar

  • [13] Gaias G. and D’Amico S., “Impulsive Maneuvers for Formation Reconfiguration Using Relative Orbital Elements,” Journal of Guidance, Control, and Dynamics, Vol. 38, No. 6, 2015, pp. 1036–1049. doi:https://doi.org/10.2514/1.G000189 JGCODS 0731-5090 LinkGoogle Scholar

  • [14] Gaias G., D’Amico S. and Ardaens J. S., “Generalised Multi-Impulsive Manoeuvres for Optimum Spacecraft Rendezvous in Near-Circular Orbit,” International Journal of Space Science and Engineering, Vol. 3, No. 1, 2015, pp. 68–88. doi:https://doi.org/10.1504/IJSPACESE.2015.069361 CrossrefGoogle Scholar

  • [15] Riggi L. and D’Amico S., “Optimal Impulsive Closed-form Control for Spacecraft Formation Flying and Rendezvous,” Proceedings of the 2016 American Control Conference (ACC), IEEE, New York, July 2016, pp. 5854–5861. doi:https://doi.org/10.1109/ACC.2016.7526587 Google Scholar

  • [16] Chernick M. and D’Amico S., “New Closed-Form Solutions for Optimal Impulsive Control of Spacecraft Relative Motion,” AIAA/AAS Astrodynamics Specialist Conference, AIAA Paper  2016-0565, Sept. 2016. LinkGoogle Scholar

  • [17] Taguchi G., Chowdhury S. and Wu Y., Taguchi’s Quality Engineering Handbook, Wiley, Hoboken, NJ, 2005, pp. 1523–1597. doi:https://doi.org/10.1002/9780470258354 Google Scholar

  • [18] Park G. J., Lee T. H., Lee K. H. and Hwang K. H., “Robust Design: An Overview,” AIAA Journal, Vol. 44, No. 1, 2006, pp. 181–191. doi:https://doi.org/10.2514/1.13639 AIAJAH 0001-1452 LinkGoogle Scholar

  • [19] Goodson T. D., Hahn Y., Strange N. J., Wagner S. V. and Wong M. C., “Maneuver-Targeting Strategies and Results for Cassini-Huygens,” The 3rd International Workshop Planetary Probe, National Aeronautics and Space Administration (NASA), Anavyssos, Greece, June–July 2005. Google Scholar

  • [20] Gates C. R., “A Simplified Model of Midcourse Maneuver Execution Errors,” Jet Propulsion Lab. TR  32-504, Pasadena, CA, 1963. Google Scholar

  • [21] Zhang J. and Parks G. T., “Multi-Objective Optimization for Multiphase Orbital Rendezvous Missions,” Journal of Guidance Control and Dynamics, Vol. 36, No. 2, 2013, pp. 622–629. doi:https://doi.org/10.2514/1.57786 LinkGoogle Scholar

  • [22] Luo Y. Z., Yang Z. and Li H. N., “Robust Optimization of Nonlinear Impulsive Rendezvous with Uncertainty,” Science China Physics, Mechanics & Astronomy, Vol. 57, No. 4, 2014, pp. 731–740. doi:https://doi.org/10.1007/s11433-013-5295-y CrossrefGoogle Scholar

  • [23] Xu M., Tan T. and Xu S. J., “Stochastic Optimal Maneuver Strategies for Transfer Trajectories,” Journal of Aerospace Engineering, Vol. 27, No. 2, 2014, pp. 225–237. doi:https://doi.org/10.1061/(ASCE)AS.1943-5525.0000276 JAEEEZ 0893-1321 CrossrefGoogle Scholar

  • [24] Georgia D., Christophe L. and Alain T., “Minimizing the Effects of Navigation Uncertainties on the Spacecraft Rendezvous Precision,” Journal of Guidance, Control, and Dynamics, Vol. 37, No. 2, 2014, pp. 695–700. doi:https://doi.org/10.2514/1.62219 JGCODS 0731-5090 LinkGoogle Scholar

  • [25] Christophe L., Denis A. and Georgia D., “Robust Rendezvous Planning Under Maneuver Execution Errors,” Journal of Guidance, Control, and Dynamics, Vol. 38, No. 1, 2015, pp. 76–93. doi:https://doi.org/10.2514/1.G000391 JGCODS 0731-5090 LinkGoogle Scholar

  • [26] Dell’Elce L. and Kerschen G., “Robust Rendezvous Planning Using the Scenario Approach and Differential Flatness,” Proceedings of the 2nd IAA Conference on Dynamics and Control of Space System, Vol. 153, Advances in the Astronautical Sciences, Univelt, San Diego, CA, 2014, pp. 1–14. Google Scholar

  • [27] Lu P. and Liu X., “Autonomous Trajectory Planning for Rendezvous and Proximity Operations by Conic Optimization,” Journal of Guidance, Control, and Dynamics, Vol. 36, No. 2, 2013, pp. 375–389. doi:https://doi.org/10.2514/1.58436 JGCODS 0731-5090 LinkGoogle Scholar

  • [28] Liu X. and Lu P., “Solving Non-Convex Optimal Control Problems by Convex Optimization,” Journal of Guidance, Control, and Dynamics, Vol. 37, No. 3, 2014, pp. 750–765. doi:https://doi.org/10.2514/1.62110 JGCODS 0731-5090 LinkGoogle Scholar

  • [29] Geller D. K., “Linear Covariance Techniques for Orbital Rendezvous Analysis and Autonomous Onboard Mission Planning,” Journal of Guidance, Control, and Dynamics, Vol. 29, No. 6, 2006, pp. 1404–1414. doi:https://doi.org/10.2514/1.19447 JGCODS 0731-5090 LinkGoogle Scholar

  • [30] Biria A. D. and Russell R. P., “A Satellite Relative Motion Model Including J2 and J3 via Vinti’s Intermediary,” Proceedings of the AAS/AIAA Space Flight Mechanics Meeting, Advances in the Astronautical Sciences, American Astronautical Soc. Paper  16-537, Univelt, San Diego, CA, Vol. 158, 2016, pp. 3475–3494. Google Scholar

  • [31] Julier S. J. and Uhlmann J. K., “Unscented Filtering and Nonlinear Estimation,” Proceedings of the IEEE, Vol. 92, No. 3, March 2004, pp. 401–422. doi:https://doi.org/10.1109/JPROC.2003.823141 IEEPAD 0018-9219 CrossrefGoogle Scholar

  • [32] Julier S. J. and Uhlmann J. K., “Reduced Sigma Point Filters for the Propagation of Means and Covariances Through Nonlinear Transformations,” Proceedings of the 2002 American Control Conference, IEEE Publ., Piscataway, NJ, May 2002, pp. 887–892. doi:https://doi.org/10.1109/ACC.2002.1023128 CrossrefGoogle Scholar

  • [33] Park R. S. and Scheeres D. J., “Nonlinear Mapping of Gaussian Statistics: Theory and Applications to Spacecraft Trajectory Design,” Journal of Guidance, Control, and Dynamics, Vol. 29, No. 6, 2006, pp. 1367–1375. doi:https://doi.org/10.2514/1.20177 JGCODS 0731-5090 LinkGoogle Scholar

  • [34] Fujimoto K., Scheeres D. J. and Alfriend K. T., “Analytical Nonlinear Propagation of Uncertainty in the Two-Body Problem,” Journal of Guidance, Control, and Dynamics, Vol. 35, No. 2, 2012, pp. 497–509. doi:https://doi.org/10.2514/1.54385 JGCODS 0731-5090 LinkGoogle Scholar

  • [35] Valli M., Armellin R., Di Lizia P. and Lavagna M. R., “Nonlinear Mapping of Uncertainties in Celestial Mechanics,” Journal of Guidance, Control, and Dynamics, Vol. 36, No. 1, 2013, pp. 48–63. doi:https://doi.org/10.2514/1.58068 JGCODS 0731-5090 LinkGoogle Scholar

  • [36] Wittig A., Di Lizia P., Armellin R., Makino K., Bernelli-Zazzera F. and Berz M., “Propagation of Large Uncertainty Sets in Orbital Dynamics by Automatic Domain Splitting,” Celestial Mechanics and Dynamical Astronomy, Vol. 122, No. 3, 2015, pp. 239–261. doi:https://doi.org/10.1007/s10569-015-9618-3 CrossrefGoogle Scholar

  • [37] Horwood J. T., Aragon N. D. and Poore A. B., “Gaussian Sum Filters for Space Surveillance: Theory and Simulations,” Journal of Guidance, Control, and Dynamics, Vol. 34, No. 6, 2011, pp. 1839–1851. doi:https://doi.org/10.2514/1.53793 JGCODS 0731-5090 LinkGoogle Scholar

  • [38] Vishwajeet K., Singla P. and Jah M., “Nonlinear Uncertainty Propagation for Perturbed Two-Body Orbits,” Journal of Guidance, Control, and Dynamics, Vol. 37, No. 5, 2014, pp. 1415–1425. doi:https://doi.org/10.2514/1.G000472 JGCODS 0731-5090 LinkGoogle Scholar

  • [39] Jones B. A., Doostan A. and Born G. H., “Nonlinear Propagation of Orbit Uncertainty Using Non-Intrusive Polynomial Chaos,” Journal of Guidance, Control, and Dynamics, Vol. 36, No. 2, 2013, pp. 430–444. doi:https://doi.org/10.2514/1.57599 JGCODS 0731-5090 LinkGoogle Scholar

  • [40] Jones B. A., Parrish N. and Doostan A., “Postmaneuver Collision Probability Estimation Using Sparse Polynomial Chaos Expansions,” Journal of Guidance, Control, and Dynamics, Vol. 38, No. 8, 2015, pp. 1425–1437. doi:https://doi.org/10.2514/1.G000595 JGCODS 0731-5090 LinkGoogle Scholar

  • [41] Ozaki N., Campagnola S., Yam C. H. and Funase R., “Differential Dynamic Programming Approach for Robust-Optimal Low-Thrust Trajectory Design Considering Uncertainty,” The 25th International Symposium on Space Flight Dynamics, European Space Agency (ESA), Munich, Oct. 2015. Google Scholar

  • [42] Ozaki N., Funase R., Campagnola S. and Yam C. H., “Stochastic Differential Dynamic Programming for Low-Thrust Trajectory Design with State Uncertainty,” 26th AAS/AIAA Space Flight Mechanics Meeting, American Astronautical Soc. Paper  16-300, Springfield, VA, Feb. 2016. Google Scholar

  • [43] Feldhacker J. D., Jones B. A. and Doostan A., “Trajectory Optimization Under Uncertainty for Rendezvous in the CRTBP,” 26th AAS/AIAA Space Flight Mechanics Meeting, American Astronautical Soc. Paper  16-471, Springfield, VA, Feb. 2016. Google Scholar

  • [44] Zhang J., Li H. Y., Luo Y. Z. and Tang G. J., “Error Analysis for Rendezvous Phasing Orbital Control Using Design of Experiments,” Aerospace Science and Technology, Vol. 17, No. 1, 2012, pp. 74–82. doi:https://doi.org/10.1016/j.ast.2011.06.009 CrossrefGoogle Scholar

  • [45] Murtazin R. F. and Budylov S. G., “Short Rendezvous Missions for Advanced Russian Human Spacecraft,” Acta Astronautica, Vol. 67, No. 7, 2010, pp. 900–909. doi:https://doi.org/10.1016/j.actaastro.2010.05.012 AASTCF 0094-5765 CrossrefGoogle Scholar

  • [46] Fehse W., Automated Rendezvous and Docking of Spacecraft, Cambridge Univ. Press, London, 2003, pp. 76–107. CrossrefGoogle Scholar

  • [47] Goodman J. L., “History of Space Shuttle Rendezvous and Proximity Operations,” Journal of Spacecraft and Rockets, Vol. 43, No. 5, 2006, pp. 944–959. doi:https://doi.org/10.2514/1.19653 LinkGoogle Scholar

  • [48] Bargiela A., “Interval and Ellipsoidal Uncertainty Models,” Granular Computing: An Emerging Paradigm, edited by Pedrycz W., Springer–Verlag, Berlin, 2001, pp. 23–57. doi:https://doi.org/10.1007/978-3-7908-1823-9_2 CrossrefGoogle Scholar

  • [49] Vinti J. P., Orbital and Celestial Mechanics, Progress in Astronautics and Aeronautics, Vol. 177, AIAA, Reston, VA, 1998, pp. 367–385. doi:https://doi.org/10.2514/4.866487 LinkGoogle Scholar

  • [50] Luo Y. Z. and Tang G. J., “Parallel Simulated Annealing Using Simplex Method,” AIAA Journal, Vol. 44, No. 12, 2006, pp. 3143–3146. doi:https://doi.org/10.2514/1.16778 AIAJAH 0001-1452 LinkGoogle Scholar

  • [51] Deb K., Pratap A., Agarwal S. and Meyarivan T., “A Fast and Elitist Multi-Objective Genetic Algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, Vol. 6, No. 2, 2000, pp. 182–197. doi:https://doi.org/10.1109/4235.996017 ITEVF5 1089-778X CrossrefGoogle Scholar