Skip to main content
Skip to article control options
No AccessFull-Length Paper

Debris Avoidance Maneuvers for Spacecraft in a Cluster

Published Online:https://doi.org/10.2514/1.G002374

Spacecraft formation flying and satellite cluster flight have seen growing interest in the last decade. However, the problem of finding the optimal debris collision avoidance maneuver for a satellite in a cluster has received little attention. This paper develops a method for choosing the timing for conducting minimum-fuel avoidance maneuvers without violating the cluster intersatellite maximal distance limits. The mean semimajor axis difference between the maneuvering satellite and the other satellites is monitored for the assessment of a maneuver possibility. In addition, three techniques for finding optimal maneuvers under the constraints of cluster keeping are developed. The first is an execution of an additional cluster-keeping maneuver at the debris time of closest approach, the second is a global all-cluster maneuver, and the third is a fuel-optimal maneuver, which incorporates the cluster-keeping constraints into the calculation of the evasive maneuver. The methods are demonstrated and compared. The first methodology proves to be the most fuel-efficient. The global maneuver guarantees boundedness of the intersatellite distances as well as fuel and mass balance. However, it is rather fuel-expensive. The last method proves to be useful at certain timings and is a compromise between fuel consumption and the number of maneuvers.

References

  • [1] Rudolph A., “LISA Pathfinder Launch and Early Operations Phase—In-Orbit Experience,” SpaceOps 2016 Conference, AIAA Paper  2016-2412, May 2016. doi:https://doi.org/10.2514/6.2016-2412 LinkGoogle Scholar

  • [2] Hesse M., Aunai N., Birn J., Cassak P., Denton R. E., Drake J. F., Gombosi T., Hoshino M., Matthaeus W., Sibeck D. and et al., “Theory and Modeling for the Magnetospheric Multiscale Mission,” Space Science Reviews, Vol. 199, Nos. 1–4, Oct. 2014, pp. 577–630. doi:https://doi.org/10.1007/s11214-014-0078-y SPSRA4 0038-6308 CrossrefGoogle Scholar

  • [3] Gill E., Montenbruck O. and D’Amico S., “Autonomous Formation Flying for the PRISMA Mission,” Journal of Spacecraft and Rockets, Vol. 44, No. 3, May 2007, pp. 671–681. doi:https://doi.org/10.2514/1.23015 JSCRAG 0022-4650 LinkGoogle Scholar

  • [4] Gurfil P., Herscovitz J. and Pariente M., “The SAMSON Project—Cluster Flight and Geolocation with Three Autonomous Nano-Satellites,” Proceedings of the 26th Annual AIAA/USU Conference on Small Satellites, AIAA Paper  SSC12-VII-2, 2012. Google Scholar

  • [5] Shahid K. and Gurfil P., “Top-Level Control of Disaggregated Satellites: Cluster Maintenance and Scatter/Re-Gather Maneuvers,” AIAA Guidance, Navigation, and Control Conference, AIAA Paper  2012-4695, Aug. 2012. doi:https://doi.org/10.2514/6.2012-4695 LinkGoogle Scholar

  • [6] Frémeaux C., “Collision Avoidance: From General Guidelines to Individual Realities,” Proceedings of the 66th International Astronautical Congress, International Aeronautical Federation (IAF) Paper  IAC-15,A6,7,1,x2796, Jerusalem, 2015. Google Scholar

  • [7] Patera R. P., “Satellite Collision Probability for Nonlinear Relative Motion,” Journal of Guidance, Control, and Dynamics, Vol. 26, No. 5, Sept. 2003, pp. 728–733. doi:https://doi.org/10.2514/2.5127 JGCODS 0731-5090 LinkGoogle Scholar

  • [8] Alfano S., “A Numerical Implementation of Spherical Object Collision Probability,” Journal of the Astronautical Sciences, Vol. 53, No. 1, 2005, pp. 103–109. JALSA6 0021-9142 CrossrefGoogle Scholar

  • [9] Foster J. and Estes H. S., “A Parametric Analysis of Orbital Debris Collision Probability and Maneuver Rate for Space Vehicles,” NASA Rept.  25898, 1992. Google Scholar

  • [10] Chan F. K., Spacecraft Collision Probability, AIAA, Reston, VA, March 2008, pp. 47–61, 77–98, 173–190. doi:https://doi.org/10.2514/4.989186 LinkGoogle Scholar

  • [11] Hoots F. R., Crawford L. L. and Roehrich R. L., “An Analytic Method to Determine Future Close Approaches Between Satellites,” Celestial Mechanics, Vol. 33, No. 2, June 1984, pp. 143–158. doi:https://doi.org/10.1007/BF01234152 CLMCAV 0008-8714 CrossrefGoogle Scholar

  • [12] Klinkrad H., “One Year of Conjunction Events of ERS-1 and ERS-2 with Objects of the USSPACECOM Catalog,” Proceedings of the 2nd European Conference on Space Debris, Vol. 393, European Space Agency, Darmstadt, Germany, 1997, p. 601. Google Scholar

  • [13] Woodburn J., Coppola V. and Stoner F., “A Description of Filters for Minimizing the Time Required for Orbital Conjunction Computations,” Advances in the Astronautical Sciences, Vol. 135, No. 2, 2009, pp. 1157–1173. Google Scholar

  • [14] Healy L. M., “Close Conjunction Detection on Parallel Computer,” Journal of Guidance, Control, and Dynamics, Vol. 18, No. 4, July 1995, pp. 824–829. doi:https://doi.org/10.2514/3.21465 JGCODS 0731-5090 LinkGoogle Scholar

  • [15] Alfano S., “Determining Satellite Close Approaches, Part 2,” Journal of the Astronautical Sciences, Vol. 42, No. 2, 1994, pp. 143–152. Google Scholar

  • [16] Denenberg E. and Gurfil P., “Improvements to Time of Closest Approach Calculation,” Journal of Guidance, Control, and Dynamics, Vol. 39, No. 9, Sept. 2016, pp. 1967–1979. doi:https://doi.org/10.2514/1.G000435 JGCODS 0731-5090 LinkGoogle Scholar

  • [17] Alfano S., “Review of Conjunction Probability Methods for Short-Term Encounters,” Proceedings of the AAS Astrodynamics Specialist Conference, American Astronautical Soc., Univelt, CA, 2007, pp. 7–148. Google Scholar

  • [18] Patera R. P., “Calculating Collision Probability for Arbitrary Space Vehicle Shapes via Numerical Quadrature,” Journal of Guidance, Control, and Dynamics, Vol. 28, No. 6, Nov. 2005, pp. 1326–1328. doi:https://doi.org/10.2514/1.14526 JGCODS 0731-5090 LinkGoogle Scholar

  • [19] Foster J. L., “The Analytic Basis for Debris Avoidance Operations for the International Space Station,” Proceedings of the Third European Conference on Space Debris, Vol. 473, Darmstadt, Germany, March 2001, pp. 441–445; also Sawaya-Lacoste H., Vol. 1, ESA Publ. Division ESA SP-473, Noordwijk, The Netherlands, 2001, pp. 441–445. Google Scholar

  • [20] Alfano S., “Addressing Nonlinear Relative Motion for Spacecraft Collision Probability,” AIAA/AAS Astrodynamics Specialist Conference and Exhibit, AIAA Paper  2006-6760, Aug. 2006. doi:https://doi.org/10.2514/6.2006-6760 LinkGoogle Scholar

  • [21] Bombardelli C. and Hernando-Ayuso J., “Optimal Impulsive Collision Avoidance in Low Earth Orbit,” Journal of Guidance, Control, and Dynamics, Vol. 38, No. 2, Feb. 2015, pp. 217–225. doi:https://doi.org/10.2514/1.G000742 JGCODS 0731-5090 LinkGoogle Scholar

  • [22] Sánchez-Ortiz N., Belló-Mora M. and Klinkrad H., “Collision Avoidance Manoeuvres During Spacecraft Mission Lifetime: Risk Reduction and Required ΔV,” Advances in Space Research, Vol. 38, No. 9, 2006, pp. 2107–2116. doi:https://doi.org/10.1016/j.asr.2005.07.054 ASRSDW 0273-1177 CrossrefGoogle Scholar

  • [23] Patera R. P. and Peterson G. E., “Space Vehicle Maneuver Method to Lower Collision Risk to an Acceptable Level,” Journal of Guidance, Control, and Dynamics, Vol. 26, No. 2, March 2003, pp. 233–237. doi:https://doi.org/10.2514/2.5063 JGCODS 0731-5090 LinkGoogle Scholar

  • [24] Alfano S., “Collision Avoidance Maneuver Planning Tool,” Proceedings of the 15th AAS/AIAA Astrodynamics Specialist Conference, American Astronautical Soc., Univelt, CA, 2005, pp. 7–11. Google Scholar

  • [25] Dateng Y., Yazhong L., Zicheng J. and Guojin T., “Multi-Objective Evolutionary Optimization of Evasive Maneuvers Including Observability Performance,” Proceedings of the IEEE Congress on Evolutionary Computation (CEC), IEEE Publ., Piscataway, NJ, May 2015, pp. 603–610. doi:https://doi.org/10.1109/cec.2015.7256946 CrossrefGoogle Scholar

  • [26] Morselli A., Armellin R., Di Lizia P. and Bernelli-Zazzera F., “Collision Avoidance Maneuver Design Based on Multi-Objective Optimization,” Proceedings of the 24th AAS/AIAA Space Flight Mechanics Meeting, Vol. 152, American Astronautical Soc., Univelt, CA, Jan. 2014, pp. 1819–1838. Google Scholar

  • [27] Kim E.-H., Kim H. and Kim H.-J., “Optimal Solution of Collision Avoidance Maneuver with Multiple Space Debris,” Journal of Space Operations—Letters, Vol. 9, No. 3, 2012, pp. 20–31. Google Scholar

  • [28] Mazal L. and Gurfil P., “Cluster Flight Algorithms for Disaggregated Satellites,” Journal of Guidance, Control, and Dynamics, Vol. 36, No. 1, Jan. 2013, pp. 124–135. doi:https://doi.org/10.2514/1.57180 JGCODS 0731-5090 LinkGoogle Scholar

  • [29] Schaub H. and Alfriend K. T., “Impulsive Feedback Control to Establish Specific Mean Orbit Elements of Spacecraft Formations,” Journal of Guidance, Control, and Dynamics, Vol. 24, No. 4, July 2001, pp. 739–745. doi:https://doi.org/10.2514/2.4774 JGCODS 0731-5090 LinkGoogle Scholar

  • [30] Newman L. K., “The NASA Robotic Conjunction Assessment Process: Overview and Operational Experiences,” Acta Astronautica, Vol. 66, Nos. 7–8, 2010, pp. 1253–1261. doi:https://doi.org/10.1016/j.actaastro.2009.10.005 AASTCF 0094-5765 CrossrefGoogle Scholar

  • [31] Foster J., “A 160 Day Simulation of Space Station Debris Avoidance Operations with USSPACECOM,” NASA DM3-95-2, Feb. 1995. Google Scholar

  • [32] Coppola V., “Evaluating the Short Encounter Assumption of the Probability of Collision Formula,” Proceedings of the AAS/AIAA Spaceflight Mechanics Meeting, Vol. 143, American Astronautical Soc., Univelt, CA, Feb. 2012. Google Scholar

  • [33] Akella M. R. and Alfriend K. T., “Probability of Collision Between Space Objects,” Journal of Guidance, Control, and Dynamics, Vol. 23, No. 5, Sept. 2000, pp. 769–772. doi:https://doi.org/10.2514/2.4611 JGCODS 0731-5090 LinkGoogle Scholar

  • [34] Serra R., Arzelier D., Joldes M., Lasserre J.-B., Rondepierre A. and Salvy B., “Fast and Accurate Computation of Orbital Collision Probability for Short-Term Encounters,” Journal of Guidance, Control, and Dynamics, Vol. 39, No. 5, May 2016, pp. 1009–1021. doi:https://doi.org/10.2514/1.G001353 JGCODS 0731-5090 LinkGoogle Scholar

  • [35] Garca-Pelayo R. and Hernando-Ayuso J., “Series for Collision Probability in Short-Encounter Model,” Journal of Guidance, Control, and Dynamics, Vol. 39, No. 8, Aug. 2016, pp. 1908–1916. doi:https://doi.org/10.2514/1.G001754 JGCODS 0731-5090 LinkGoogle Scholar

  • [36] Alfriend K. T., Akella M. R., Frisbee J., Foster J. L., Lee D.-J. and Wilkins M., “Probability of Collision Error Analysis,” Space Debris, Vol. 1, No. 1, 1999, pp. 21–35. doi:https://doi.org/10.1023/A:1010056509803 CrossrefGoogle Scholar

  • [37] Alfano S., “Relating Position Uncertainty to Maximum Conjunction Pro,” Journal of the Astronautical Sciences, Vol. 53, No. 2, 2005, pp. 193–205. CrossrefGoogle Scholar

  • [38] Patera R. P., “General Method for Calculating Satellite Collision Probability,” Journal of Guidance, Control, and Dynamics, Vol. 24, No. 4, July 2001, pp. 716–722. doi:https://doi.org/10.2514/2.4771 JGCODS 0731-5090 LinkGoogle Scholar

  • [39] Hoots F. R., Schumacher P. W. and Glover R. A., “History of Analytical Orbit Modeling in the US Space Surveillance System,” Journal of Guidance, Control, and Dynamics, Vol. 27, No. 2, 2004, pp. 174–185. doi:https://doi.org/10.2514/1.9161 JGCODS 0731-5090 LinkGoogle Scholar

  • [40] Alfriend K., Vadali S. R., Gurfil P., How J. and Breger L., Spacecraft Formation Flying: Dynamics, Control and Navigation, Vol. 2, Butterworth-Heinemann, Oxford, U.K., 2009, pp. 241–270, Chap. 10. Google Scholar

  • [41] Ben-Yaacov O. and Gurfil P., “Long-Term Cluster Flight of Multiple Satellites Using Differential Drag,” Journal of Guidance, Control, and Dynamics, Vol. 36, No. 6, Nov. 2013, pp. 1731–1740. doi:https://doi.org/10.2514/1.61496 JGCODS 0731-5090 LinkGoogle Scholar

  • [42] Mazal L. and Gurfil P., “Closed-Loop Distance-Keeping for Long-Term Satellite Cluster Flight,” Acta Astronautica, Vol. 94, No. 1, Jan. 2014, pp. 73–82. doi:https://doi.org/10.1016/j.actaastro.2013.08.002 AASTCF 0094-5765 CrossrefGoogle Scholar

  • [43] Deb K., Multi-Objective Optimization Using Evolutionary Algorithms, Vol. 16, Systems and Optimization Series, Wiley, Hoboken, NJ, 2001, pp. 13–46. Google Scholar

  • [44] Wright M. H., “The Interior-Point Revolution in Optimization: History, Recent Developments, and Lasting Consequences,” Bulletin of the American Mathematical Society, Vol. 42, No. 1, Sept. 2004, pp. 39–57. doi:https://doi.org/10.1090/S0273-0979-04-01040-7 BAMOAD 0273-0979 CrossrefGoogle Scholar