Skip to main content
Skip to article control options
No AccessFull-Length Papers

Optimal Rocket Landing Guidance Using Convex Optimization and Model Predictive Control

Published Online:https://doi.org/10.2514/1.G003518

In this paper, a novel guidance algorithm based on convex optimization, pseudospectral discretization, and a model predictive control (MPC) framework is proposed to solve the highly nonlinear and constrained fuel-optimal rocket landing problem. The main strategy is to solve the guidance problem by implementing online trajectory optimization in a receding-horizon manner and feeding the rocket with the most recently updated optimal control commands. A pseudospectral-improved successive convexification (PISC) algorithm is adopted to solve the trajectory optimization problem due to its high solution accuracy and computation speed. The PISC algorithm is then embedded in the MPC framework to construct the guidance algorithm. The recursive feasibility of the MPC-based guidance algorithm is guaranteed by executing the original and relaxed trajectory optimization algorithms in parallel. Additionally, the boundedness of the guidance error is proved. Therefore, the guidance algorithm is optimal, robust, and practically stable under constraints and disturbances. Numerical experiments are provided to demonstrate the effectiveness of the proposed algorithm.

References

  • [1] Blackmore L., “Autonomous Precision Landing of Space Rockets,” Bridge, Vol. 4, No. 46, 2016, pp. 15–20. Google Scholar

  • [2] Liu X., “Fuel-Optimal Rocket Landing with Aerodynamic Controls,” AIAA Guidance, Navigation, and Control Conference, AIAA Paper 2017-1732, Jan. 2017. doi:https://doi.org/10.2514/6.2017-1732 LinkGoogle Scholar

  • [3] Lu P., “Introducing Computational Guidance and Control,” Journal of Guidance, Control, and Dynamics, Vol. 40, No. 2, 2017, pp. 193–193. doi:https://doi.org/10.2514/1.G002745 JGCODS 0731-5090 LinkGoogle Scholar

  • [4] Ross I. M. and Fahroo F., “Issues in the Real-Time Computation of Optimal Control,” Mathematical and Computer Modelling, Vol. 43, Nos. 9–10, 2006, pp. 1172–1188. doi:https://doi.org/10.1016/j.mcm.2005.05.021 MCMOEG 0895-7177 CrossrefGoogle Scholar

  • [5] Ross I. M., Sekhavat P., Fleming A. and Gong Q., “Optimal Feedback Control: Foundations, Examples, and Experimental Results for a new Approach,” Journal of Guidance, Control, and Dynamics, Vol. 31, No. 2, 2008, pp. 307–321. doi:https://doi.org/10.2514/1.29532 JGCODS 0731-5090 LinkGoogle Scholar

  • [6] Bollino K. P., “High-Fidelity Real-Time Trajectory Optimization for Reusable Launch Vehicles,” Ph.D. Thesis, Naval Postgraduate School, Monterey, CA, 2006. Google Scholar

  • [7] Sagliano M., Mooij E. and Theil S., “Onboard Trajectory Generation for Entry Vehicles via Adaptive Multivariate Pseudospectral Interpolation,” Journal of Guidance, Control, and Dynamics, Vol. 40, No. 2, 2017, pp. 466–476. doi:https://doi.org/10.2514/1.G001817 JGCODS 0731-5090 LinkGoogle Scholar

  • [8] Liu X. and Lu P., “Solving Nonconvex Optimal Control Problems by Convex Optimization,” Journal of Guidance, Control, and Dynamics, Vol. 37, No. 3, 2014, pp. 750–765. doi:https://doi.org/10.2514/1.62110 JGCODS 0731-5090 LinkGoogle Scholar

  • [9] Boyd S. and Vandenberghe L., Convex Optimization, Cambridge Univ. Press, Cambridge, England, U.K., 2004, Chaps. 1–4. CrossrefGoogle Scholar

  • [10] Açıkmeşe B. and Ploen S. R., “Convex Programming Approach to Powered Descent Guidance for Mars Landing,” Journal of Guidance, Control, and Dynamics, Vol. 30, No. 5, 2007, pp. 1353–1366. doi:https://doi.org/10.2514/1.27553 JGCODS 0731-5090 LinkGoogle Scholar

  • [11] Blackmore L., Acikmese B. and Scharf D. P., “Minimum-Landing-Error Powered-Descent Guidance for Mars Landing Using Convex Optimization,” Journal of Guidance, Control, and Dynamics, Vol. 33, No. 4, 2010, pp. 1161–1171. doi:https://doi.org/10.2514/1.47202 JGCODS 0731-5090 LinkGoogle Scholar

  • [12] Harris M. W. and Açıkmeşe B., “Lossless Convexification of Non-Convex Optimal Control Problems for State Constrained Linear Systems,” Automatica, Vol. 50, No. 9, 2014, pp. 2304–2311. doi:https://doi.org/10.1016/j.automatica.2014.06.008 ATCAA9 0005-1098 CrossrefGoogle Scholar

  • [13] Blackmore L., Açıkmeşe B. and Carson J. M., “Lossless Convexification of Control Constraints for a Class of Nonlinear Optimal Control Problems,” Systems Control Letters, Vol. 61, No. 8, 2012, pp. 863–870. doi:https://doi.org/10.1016/j.sysconle.2012.04.010 CrossrefGoogle Scholar

  • [14] Morgan D., Chung S.-J. and Hadaegh F. Y., “Model Predictive Control of Swarms of Spacecraft Using Sequential Convex Programming,” Journal of Guidance, Control, and Dynamics, Vol. 37, No. 6, 2014, pp. 1725–1740. doi:https://doi.org/10.2514/1.G000218 JGCODS 0731-5090 LinkGoogle Scholar

  • [15] Liu X., Shen Z. and Lu P., “Entry Trajectory Optimization by Second Order Cone Programming,” Journal of Guidance, Control, and Dynamics, Vol. 39, No. 2, 2016, pp. 227–241. doi:https://doi.org/10.2514/1.G001210 JGCODS 0731-5090 LinkGoogle Scholar

  • [16] Szmuk M. and Açıkmeşe B., “Successive Convexification for Fuel Optimal Powered Landing with Aerodynamic Drag and Non-Convex Constraints,” AIAA Guidance, Navigation, and Control Conference, AIAA Paper 2016-0378, Jan. 2016. doi:https://doi.org/10.2514/6.2016-0378 LinkGoogle Scholar

  • [17] Wang Z. and Grant M. J., “Constrained Trajectory Optimization for Planetary Entry via Sequential Convex Programming,” Journal of Guidance, Control, and Dynamics, Vol. 40, No. 10, 2017, pp. 2603–2615. doi:https://doi.org/10.2514/1.G002150 JGCODS 0731-5090 LinkGoogle Scholar

  • [18] Scharf D. P., Açıkmeşe B., Dueri D., Benito J. and Casoliva J., “Implementation and Experimental Demonstration of Onboard Powered Descent Guidance,” Journal of Guidance, Control, and Dynamics, Vol. 40, No. 2, 2017, pp. 213–229. doi:https://doi.org/10.2514/1.G000399 JGCODS 0731-5090 LinkGoogle Scholar

  • [19] Garg D., “Advances in Global Pseudospectral Methods for Optimal Control,” Ph.D. Thesis, Univ. of Florida, Gainesville, FL, 2011. Google Scholar

  • [20] Huntington G. T., “Advancement and Analysis of a Gauss Pseudospectral Transcription for Optimal Control,” Ph.D. Thesis, Massachusetts Inst.of Technology, Cambridge, MA, 2007. Google Scholar

  • [21] Trefethen L. N., Spectral Methods in MATLAB, Society for Industrial and Applied Mathematics, Philadelphia, 2000, Chaps. 1 and 4. CrossrefGoogle Scholar

  • [22] Wang J. and Cui N., “A Pseudospectral-Convex Optimization Algorithm for Rocket Landing Guidance,” AIAA Guidance, Navigation, and Control Conference, AIAA Paper 2018-1871, Jan. 2018. doi:https://doi.org/10.2514/6.2018-1871 Google Scholar

  • [23] Sagliano M., “Pseudospectral Convex Optimization for Powered Descent and Landing,” Journal of Guidance, Control, and Dynamics, Vol. 41, No. 2, 2018, pp. 320–334. doi:https://doi.org/10.2514/1.G002818 JGCODS 0731-5090 LinkGoogle Scholar

  • [24] Mayne D. Q., Rawlings J. B., Rao C. V. and Scokaert P. O. M., “Constrained Model Predictive Control: Stability and Optimality,” Automatica, Vol. 36, No. 6, 2000, pp. 789–814. doi:https://doi.org/10.1016/S0005-1098(99)00214-9 ATCAA9 0005-1098 CrossrefGoogle Scholar

  • [25] Eren U., Prach A., Koçer B. B., Raković S. V., Kayacan E. and Açıkmeşe B., “Model Predictive Control in Aerospace Systems: Current State and Opportunities,” Journal of Guidance, Control, and Dynamics, Vol. 40, No. 7, 2017, pp. 1541–1566. doi:https://doi.org/10.2514/1.G002507 JGCODS 0731-5090 LinkGoogle Scholar

  • [26] Mayne D. Q., “Model Predictive Control: Recent Developments and Future Promise,” Automatica, Vol. 50, No. 12, 2014, pp. 2967–2986. doi:https://doi.org/10.1016/j.automatica.2014.10.128 ATCAA9 0005-1098 CrossrefGoogle Scholar

  • [27] Carson J. M., Açikmeşe B., Murray R. M. and MacMartin D. G., “A Robust Model Predictive Control Algorithm Augmented with a Reactive Safety Mode,” Automatica, Vol. 49, No. 5, 2013, pp. 1251–1260. doi:https://doi.org/10.1016/j.automatica.2013.02.025 ATCAA9 0005-1098 CrossrefGoogle Scholar

  • [28] Zeilinger M. N., Raimondo D. M., Domahidi A., Morari M. and Jones C. N., “On Real-Time Robust Model Predictive Control,” Automatica, Vol. 50, No. 3, 2014, pp. 683–694. doi:https://doi.org/10.1016/j.automatica.2013.11.019 ATCAA9 0005-1098 CrossrefGoogle Scholar

  • [29] Lu P., “Entry Guidance: A Unified Method,” Journal of Guidance, Control, and Dynamics, Vol. 37, No. 3, 2014, pp. 713–728. doi:https://doi.org/10.2514/1.62605 JGCODS 0731-5090 LinkGoogle Scholar

  • [30] Ross I. M., A Primer in Pontryagin’s Principle in Optimal Control, Collegiate Publ., Carmel, CA, 2015. Google Scholar

  • [31] Liu X., Lu P. and Pan B., “Survey of Convex Optimization for Aerospace Applications,” Astrodynamics, Vol. 1, No. 1, 2017, pp. 23–40. doi:https://doi.org/10.1007/s42064-017-0003-8 CrossrefGoogle Scholar

  • [32] Andersen E. D., Roos C. and Terlaky T., “On Implementing a Primal-Dual Interior-Point Method for Conic Quadratic Optimization,” Mathematical Programming, Vol. 95, No. 2, 2003, pp. 249–277. doi:https://doi.org/10.1007/s10107-002-0349-3 MHPGA4 1436-4646 CrossrefGoogle Scholar

  • [33] Bellman R. E. and Dreyfus S. E., Applied Dynamic Programming, Princeton Univ. Press, Princeton, NJ, 1962. CrossrefGoogle Scholar

  • [34] Shen Z. and Lu P., “Onboard Generation of Three-Dimensional Constrained Entry Trajectories,” Journal of Guidance, Control, and Dynamics, Vol. 26, No. 1, 2003, pp. 111–121. doi:https://doi.org/10.2514/2.5021 JGCODS 0731-5090 LinkGoogle Scholar

  • [35] Bollino K., Oppenheimer M. and Doman D., “Optimal Guidance Command Generation and Tracking for Reusable Launch Vehicle Reentry,” AIAA Guidance, Navigation, and Control Conference, AIAA Paper 2006-6691, Aug. 2006. doi:https://doi.org/10.2514/6.2006-6691 Google Scholar

  • [36] Bollino K. and Ross I. M., “A Pseudospectral Feedback Method for Real-Time Optimal Guidance of Reentry Vehicles,” Proceedings of the IEEE American Control Conference, IEEE, New York, July 2007, pp. 3861–3867. doi:https://doi.org/10.1109/ACC.2007.4282500 Google Scholar

  • [37] Bollino K., Ross I. M. and Doman D. B., “Optimal Nonlinear Feedback Guidance for Reentry Vehicles,” AIAA Guidance, Navigation, and Control Conference, AIAA Paper 2006-6074, Aug. 2006. doi:https://doi.org/10.2514/6.2006-6074 LinkGoogle Scholar

  • [38] Carson J. M., “Robust Model Predictive Control with a Reactive Safety Mode,” Ph.D. Thesis, California Inst. of Technology, Pasadena, CA, 2011. Google Scholar

  • [39] Kerrigan E. C. and Maciejowski J. M., “Soft Constraints and Exact Penalty Functions in Model Predictive Control,” Proceedings of the UKACC International Conference on Control, Institution of Engineering and Technology, U.K., Sept. 2000. Google Scholar

  • [40] Golub G. H. and Ortega J. M., Scientific Computing: An Introduction with Parallel Computing, Elsevier, New York, 2014. Google Scholar

  • [41] Antony T. and Grant M. J., “Rapid Indirect Trajectory Optimization on Highly Parallel Computing Architectures,” Journal of Spacecraft and Rockets, Vol. 54, No. 5, 2017, pp. 1081–1091. doi:https://doi.org/10.2514/1.A33755 JSCRAG 0022-4650 LinkGoogle Scholar

  • [42] Pan J. and Manocha D., “GPU-Based Parallel Collision Detection for Fast Motion Planning,” International Journal of Robotics Research, Vol. 31, No. 2, 2012, pp. 187–200. doi:https://doi.org/10.1177/0278364911429335 CrossrefGoogle Scholar

  • [43] Zabczyk J., Mathematical Control Theory: An Introduction, Birkhäuser, Boston, Cambridge, MA, 1992, pp. 92–93. Google Scholar

  • [44] Patterson M. A. and Rao A. V., “GPOPS-II: A Matlab Software for Solving Multiple-Phase Optimal Control Problems Using hp-Adaptive Gaussian Quadrature Collocation Methods and Sparse Nonlinear Programming,” ACM Transactions on Mathematical Software, Vol. 41, No. 1, 2014, pp. 1–37. doi:https://doi.org/10.1145/2684421 ACMSCU 0098-3500 CrossrefGoogle Scholar

  • [45] Chapman B., Jost G. and Van der Pas R., Using OpenMP: Portable Shared Memory Parallel Programming, MIT Press, Cambridge, MA, 2008. Google Scholar

  • [46] Dueri D., Acikmese B., Scharf D. and Harris M., “Customized Real Time Interior-Point Methods for Onboard Powered-Descent Guidance,” Journal of Guidance, Control, and Dynamics, Vol. 40, No. 2, 2017, pp. 197–212. doi:https://doi.org/10.2514/1.G001480 JGCODS 0731-5090 LinkGoogle Scholar