Skip to main content
Skip to article control options
No AccessFull-Length Papers

Three-Axis Attitude Determination with Pseudo-Bias Estimation from Gravity/Magnetic Vector Observations

Published Online:https://doi.org/10.2514/1.G005253

This paper revisits the stationary alignment problem of attitude and heading reference systems (AHRSs). The investigation is initiated from the three-axis attitude determination (TRIAD)–based method, purposely chosen to use nonunitary/nonorthogonal observations of the local gravity and Earth’s magnetic flux density vectors. For the simplifying assumption of body and navigation frames aligned, a comprehensive error analysis is developed, providing additional insight into the problem. Closed-form formulas for the residual normality and orthogonality errors are used to devise innovative pseudo-bias estimation (PBE) algorithms for the x- and z-axis magnetometer biases, as well as for the z-axis accelerometer bias. As a direct consequence of applying the latter, and also figuring as the main contribution of this paper, an improved (more accurate) AHRS stationary alignment approach is obtained, herein called TRIAD-PBE. The error analysis is extended to representative state-of-the-art attitude determination techniques, confirming the relevance of TRIAD-PBE, especially in the presence of hard-iron magnetism. Results from simulated and experimental tests confirm the adequacy of the outlined verifications.

References

  • [1] Kayton M. and Fried W. R., Avionics Navigation Systems, Wiley, New York, 1997, Chap. 9. https://doi.org/10.1002/9780470172704 CrossrefGoogle Scholar

  • [2] Groves P. D., Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems, Artech House Remote Sensing Library, London, 2013, Chap. 6. Google Scholar

  • [3] Valenti R. G., Dryanovski I. and Xiao J., “A Linear Kalman Filter for MARG Orientation Estimation Using the Algebraic Quaternion Algorithm,” IEEE Transactions on Instrumentation and Measurement, Vol. 65, No. 2, 2016, pp. 467–481. https://doi.org/10.3390/s150819302 CrossrefGoogle Scholar

  • [4] Wu J., Zhou Z., Chen J., Fourati H. and Li R., “Fast Complementary Filter for Attitude Estimation Using Low-Cost MARG Sensors,” IEEE Sensors Journal, Vol. 16, No. 18, 2016, pp. 6997–7007. https://doi.org/10.1109/JSEN.2016.2589660 CrossrefGoogle Scholar

  • [5] Zhu R. and Zhou Z., “A Small Low-Cost Hybrid Orientation System and Its Error Analysis,” IEEE Sensors Journal, Vol. 9, No. 3, 2009, pp. 223–230. https://doi.org/10.1109/JSEN.2008.2012196 CrossrefGoogle Scholar

  • [6] Del Rosario M. B., Lovell N. H. and Redmond S. J., “Quaternion-Based Complementary Filter for Attitude Determination of a Smartphone,” IEEE Sensors Journal, Vol. 16, No. 15, 2016, pp. 6008–6017. https://doi.org/10.1109/JSEN.2016.2574124 CrossrefGoogle Scholar

  • [7] Sabatini A. M., “Quaternion-Based Extended Kalman Filter for Determining Orientation by Inertial and Magnetic Sensing,” IEEE Transactions on Biomedical Engineering, Vol. 53, No. 7, 2006, pp. 1346–1356. https://doi.org/10.1109/TBME.2006.875664 CrossrefGoogle Scholar

  • [8] Li W. and Wang J., “Effective Adaptive Kalman Filter for MEMS-IMU/Magnetometers Integrated Attitude and Heading Reference Systems,” Journal of Navigation, Vol. 66, No. 1, 2013, pp. 99–113. https://doi.org/10.1017/S0373463312000331 CrossrefGoogle Scholar

  • [9] Farrell J. A., Aided Navigation: GPS with High Rate Sensors, McGraw–Hill, New York, 2008, Chap. 10. Google Scholar

  • [10] Markley F. L. and Crassidis J. L., Fundamentals of Spacecraft Attitude Determination and Control, Springer, New York, 2014, Chap. 5. https://doi.org/10.1007/978-1-4939-0802-8 CrossrefGoogle Scholar

  • [11] Black H. D., “A Passive System for Determining the Attitude of a Satellite,” AIAA Journal, Vol. 2, No. 7, 1964, pp. 1350–1351. https://doi.org/10.2514/3.2555 LinkGoogle Scholar

  • [12] Shuster M. D., “The QUEST for Better Attitudes,” Journal of the Astronautical Sciences, Vol. 54, Nos. 3–4, 2006, pp. 657–683. https://doi.org/10.1007/BF03256511 CrossrefGoogle Scholar

  • [13] Joint Committee for Guides in Metrology 100: Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement,” Joint Committee for Guides in Metrology Tech. Rept. JCGM 100:2008, Sèvres, France, 2008. Google Scholar

  • [14] Markley F. L., “Attitude Determination Using Two Vector Measurements,” Proceedings of the Flight Mechanics Symposium, NASA Goddard Space Flight Center, Greenbelt, MD, 1999, pp. 39–52. Google Scholar

  • [15] Shuster M. D., “The Optimization of TRIAD,” Journal of the Astronautical Sciences, Vol. 55, No. 2, 2007, pp. 245–257. https://doi.org/10.1007/BF03256523 CrossrefGoogle Scholar

  • [16] Markley F. L., “Optimal Attitude Matrix from Two Vector Measurements,” Journal of Guidance, Control, and Dynamics, Vol. 31, No. 3, 2008, pp. 765–768. https://doi.org/10.2514/1.35597 LinkGoogle Scholar

  • [17] Bar-Itzhack I. Y. and Harman R. R., “Optimized TRIAD Algorithm for Attitude Determination,” Journal of Guidance, Control, and Dynamics, Vol. 20, No. 1, 1996, pp. 208–211. https://doi.org/10.2514/2.4025 Google Scholar

  • [18] Wahba G., “A Least Squares Estimate of Satellite Attitude,” SIAM Review, Vol. 8, No. 3, 1966, pp. 384–386. https://doi.org/10.1137/1007077 Google Scholar

  • [19] Davenport P. B., “A Vector Approach to the Algebra of Rotations with Applications,” NASA D 4696, Aug. 1968. Google Scholar

  • [20] Shuster M. D. and Oh S. D., “Three-Axis Attitude Determination from Vector Observations,” Journal of Guidance and Control, Vol. 4, No. 1, 1981, pp. 70–77. https://doi.org/10.2514/3.19717 LinkGoogle Scholar

  • [21] Markley F. L., “Attitude Determination Using Vector Observations and the Singular Value Decomposition,” Journal of the Astronautical Sciences, Vol. 38, No. 3, 1988, pp. 245–258. Google Scholar

  • [22] Markley F. L., “Attitude Determination Using Vector Observations: A Fast Optimal Matrix Algorithm,” Journal of the Astronautical Sciences, Vol. 41, No. 2, 1993, pp. 261–280. Google Scholar

  • [23] Mortari D., “Euler-2 and Euler-N Algorithms for Attitude Determination from Vector Observations,” Space Technology, Vol. 16, Nos. 5/6, 1996, pp. 317–321. CrossrefGoogle Scholar

  • [24] Mortari D., “ESOQ: A Closed-Form Solution to the Wahba Problem,” Journal of the Astronautical Sciences, Vol. 45, No. 2, 1997, pp. 195–204. CrossrefGoogle Scholar

  • [25] Mortari D., “Second Estimator of the Optimal Quaternion,” Journal of Guidance, Control, and Dynamics, Vol. 23, No. 5, 2000, pp. 885–888. https://doi.org/10.2514/2.4618 LinkGoogle Scholar

  • [26] Wu J., Zhou Z., Gao B., Li R., Cheng Y. and Fourati H., “Fast Linear Quaternion Attitude Estimator Using Vector Observations,” IEEE Transactions on Automation Science and Engineering, Vol. 15, No. 1, 2018, pp. 307–319. https://doi.org/10.1109/TASE.2017.2699221 CrossrefGoogle Scholar

  • [27] Bar-Itzhack I. Y., “REQUEST: A Recursive QUEST Algorithm for Sequential Attitude Determination,” Journal of Guidance, Control, and Dynamics, Vol. 19, No. 5, 1996, pp. 1034–1038. https://doi.org/10.2514/3.21742 LinkGoogle Scholar

  • [28] Choukroun D., Bar-Itzhack I. Y. and Oshman Y., “Optimal-REQUEST Algorithm for Attitude Determination,” Journal of Guidance, Control, and Dynamics, Vol. 27, No. 3, 2004, pp. 418–425. https://doi.org/10.2514/6.2001-4153 LinkGoogle Scholar

  • [29] Lefferts E. J., Markley F. L. and Shuster M. D., “Kalman Filtering for Spacecraft Attitude Estimation,” Journal of Guidance, Control, and Dynamics, Vol. 5, No. 5, 1982, pp. 417–429. https://doi.org/10.2514/3.56190 LinkGoogle Scholar

  • [30] Bar-Itzhack I. Y. and Oshman Y., “Attitude Determination from Vector Observations: Quaternion Estimation,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 21, No. 1, 1985, pp. 128–136. https://doi.org/10.1109/TAES.1985.310546 CrossrefGoogle Scholar

  • [31] Psiaki M. L., “Attitude-Determination Filtering via Extended Quaternion Estimation,” Journal of Guidance, Control, and Dynamics, Vol. 23, No. 2, 2000, pp. 206–214. https://doi.org/10.2514/2.4540 LinkGoogle Scholar

  • [32] Choukroun D., Bar-Itzhack I. Y. and Oshman Y., “Novel Quaternion Kalman Filter,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 42, No. 1, 2006, pp. 174–190. https://doi.org/10.1109/TAES.2006.1603413 CrossrefGoogle Scholar

  • [33] Gebre-Egziabher D. and Elkaim G. H., “MAV Attitude Determination by Vector Matching,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 44, No. 3, 2008, pp. 1012–1028. https://doi.org/10.1109/TAES.2008.4655360 CrossrefGoogle Scholar

  • [34] Markley F. L. and Mortari D., “Quaternion Attitude Estimation Using Vector Observations,” Journal of the Astronautical Sciences, Vol. 48, Nos. 2/3, 2000, pp. 359–380. CrossrefGoogle Scholar

  • [35] Crassidis J. L., Markley F. L. and Cheng Y., “Survey of Nonlinear Attitude Estimation,” Journal of Guidance, Control, and Dynamics, Vol. 30, No. 1, 2007, pp. 12–28. https://doi.org/10.2514/1.22452 LinkGoogle Scholar

  • [36] Yun X., Bachmann E. R. and McGhee R. B., “A Simplified Quaternion-Based Algorithm for Orientation Estimation from Earth Gravity and Magnetic Field Measurements,” IEEE Transactions on Instrumentation and Measurement, Vol. 57, No. 3, 2008, pp. 638–650. https://doi.org/10.1109/TIM.2007.911646 Google Scholar

  • [37] Wu J., Zhou Z., Fourati H. and Cheng Y., “A Super Fast Attitude Determination Algorithm for Consumer-Level Accelerometer and Magnetometer,” IEEE Transactions on Consumer Electronics, Vol. 64, No. 3, 2018, pp. 375–381. https://doi.org/10.1109/TCE.2018.2859625 Google Scholar

  • [38] Suh Y. S., “Simple-Structured Quaternion Estimator Separating Inertial and Magnetic Sensor Effects,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 55, No. 6, 2019, pp. 2698–2706. https://doi.org/10.1109/TAES.2019.2901559 CrossrefGoogle Scholar

  • [39] Wu Z., Wu Y., Hu X. and Wu M., “Calibration of Three-Axis Magnetometer Using Stretching Particle Swarm Optimization Algorithm,” IEEE Transactions on Instrumentation and Measurement, Vol. 62, No. 2, 2013, pp. 281–292. https://doi.org/10.1109/TIM.2012.2214951 CrossrefGoogle Scholar

  • [40] Zhang Z., “Two-Step Calibration Methods for Miniature Inertial and Magnetic Sensor Units,” IEEE Transactions on Industrial Electronics, Vol. 62, No. 6, 2015, pp. 3714–3723. https://doi.org/10.1109/TIE.2014.2375258 Google Scholar

  • [41] Gebre-Egziabher D., Elkaim G. H., Powell J. D. and Parkinson B. W., “Calibration of Strapdown Magnetometers in the Magnetic Field Domain,” Journal of Aerospace Engineering, Vol. 19, No. 2, 2006, pp. 1–45. https://doi.org/10.1061/(ASCE)0893-1321(2006)19:2(87) Google Scholar

  • [42] Bowditch N., “The American Practical Navigator,” Defense Mapping Agency Hydrographic/Topographic Center Tech. Rept. NVPUB9V1, Greenbelt, MD, 1995. Google Scholar

  • [43] Crassidis J. L., Lai K. L. and Harman R. R., “Real-Time Attitude-Independent Three-Axis Magnetometer Calibration,” Journal of Guidance, Control, and Dynamics, Vol. 28, No. 1, 2005, pp. 115–120. https://doi.org/10.2514/1.6278 LinkGoogle Scholar

  • [44] Renk E. L., Collins W., Rizzo M., Lee F. and Barnstein D. S., “Calibrating a Triaxial Accelerometer-Magnetometer Using Robotic Actuation for Sensor Reorientation During Data Collection,” IEEE Control Systems Magazine, Vol. 25, No. 5, 2005, pp. 86–95. https://doi.org/10.1109/MCS.2005.1550155 Google Scholar

  • [45] Foster C. C. and Elkaim G. H., “Extension of a Two-Step Calibration Methodology to Include Nonorthogonal Sensor Axes,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 44, No. 3, 2008, pp. 1070–1078. https://doi.org/10.1109/TAES.2008.4655364 CrossrefGoogle Scholar

  • [46] Vasconcelos J. F., Elkaim G., Silvestre C., Oliveira P. and Cardeira B., “Geometric Approach to Strapdown Magnetometer Calibration in Sensor Frame,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 47, No. 2, 2011, pp. 1293–1306. https://doi.org/10.1109/TAES.2011.5751259 CrossrefGoogle Scholar

  • [47] Springmann J. C., “Attitude-Independent Magnetometer Calibration with Time-Varying Bias,” Journal of Guidance, Control, and Dynamics, Vol. 35, No. 4, 2012, pp. 1–9. https://doi.org/10.2514/1.56726 Google Scholar

  • [48] Zhang Z. and Yang G., “Calibration of Miniature Inertial and Magnetic Sensor Units for Robust Attitude Estimation,” IEEE Transactions on Instrumentation and Measurement, Vol. 63, No. 3, 2014, pp. 711–718. https://doi.org/10.1109/TIM.2013.2281562 CrossrefGoogle Scholar

  • [49] Särkkä O., Nieminem T. and Kettunen L., “A Multi-Position Calibration Method for Consumer-Grade Accelerometers, Gyroscopes, and Magnetometers to Field Conditions,” IEEE Sensors Journal, Vol. 17, No. 11, 2017, pp. 3470–3481. https://doi.org/10.1109/JSEN.2017.2694488 CrossrefGoogle Scholar

  • [50] Söken H. E. and Sakai S. I., “Real-Time Attitude-Independent Magnetometer Bias Estimation for Spinning Spacecraft,” Journal of Guidance, Control, and Dynamics, Vol. 41, No. 1, 2017, pp. 276–279. https://doi.org/10.2514/1.G002706 Google Scholar

  • [51] Savage P. G., Strapdown Analytics, Strapdown Analytics, Strapdown Assoc., Maple Plain, 2007, Chap. 3. Google Scholar

  • [52] Jiang Y. F. and Lin Y. P., “Error Estimation of Quaternion Transformations,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 27, No. 4, 1991, pp. 634–639. https://doi.org/10.1109/7.85036 CrossrefGoogle Scholar

  • [53] Lovren N. and Pieper J. K., “Error Analysis of Direction Cosines and Quaternion Parameters Techniques for Aircraft Attitude Determination,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 34, No. 3, 1998, pp. 983–989. https://doi.org/10.1109/7.705910 CrossrefGoogle Scholar

  • [54] Choukroun D., Weiss H., Bar-Itzhack I. Y. and Oshman Y., “Direction Cosine Matrix Estimation from Vector Observations Using a Matrix Kalman Filter,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 46, No. 1, 2010, pp. 61–79. https://doi.org/10.1109/TAES.2010.5417148 CrossrefGoogle Scholar

  • [55] Bar-Itzhack I. Y. and Fegley K. A., “Orthogonalization Techniques of a Direct Cosine Matrix,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 5, No. 5, 1969, pp. 798–804. https://doi.org/10.1109/TAES.1969.309878 CrossrefGoogle Scholar

  • [56] Bar-Itzhack I. Y., “Iterative Optimal Orthogonalization of the Strapdown Matrix,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 11, No. 1, 1975, pp. 30–37. https://doi.org/10.1109/TAES.1975.308025 Google Scholar

  • [57] Bar-Itzhack I. Y. and Meyer J., “On the Convergence of Iterative Orthogonalization Processes,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 12, No. 2, 1976, pp. 146–151. https://doi.org/10.1109/TAES.1976.308289 CrossrefGoogle Scholar

  • [58] Bar-Itzhack I. Y., Meyer J. and Fuhrmann P. A., “Strapdown Matrix Orthogonalization: The Dual Iterative Algorithm,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 12, No. 1, 1976, pp. 32–38. https://doi.org/10.1109/TAES.1976.308212 Google Scholar

  • [59] Meyer J. and Bar-Itzhack I. Y., “Practical Comparison of Iterative Matrix Orthogonalization Algorithms,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 13, No. 1, 1977, pp. 230–235. https://doi.org/10.1109/TAES.1977.308390 Google Scholar

  • [60] Bar-Itzhack I. Y., Deutschmann J. and Markley F. L., “Quaternion Normalization in Additive EKF for Spacecraft Attitude Determination,” Proceedings of Guidance, Navigation, and Control Conference, AIAA Paper 1991-2706, 1991. https://doi.org/10.2514/6.1991-2706 Google Scholar

  • [61] Deutschmann J., Markley F. L. and Bar-Itzhack I. Y., “Quaternion Normalization in Spacecraft Attitude Determination,” Proceedings of Flight Mechanics/Estimation Theory Symposium, AIAA Paper 1992-4366, 1992. https://doi.org/10.2514/6.1992-4366 Google Scholar

  • [62] Chulliat A., Macmillan S., Alken P., Beggan C., Nair M., Hamilton B., Woods A., Ridley V., Maus S. and Thompson A., “The US/UK World Magnetic Model for 2015-2020,” Tech. Rept., National Oceanic and Atmospheric Administration, Boulder, CO, 2015. https://doi.org/10.7289/V5TB14V7 Google Scholar

  • [63] Finlay C. C., Maus S., Beggan C. D., Bondar T. N., Chambodut A., Chernova T. A., Chulliat A., Golovkov V. P., Hamilton B., Hamoudi B., Holme R., Hulot G., Kuang W., Langlais B., Lesur V., Lowes F. J., Lühr H., Macmillan S., Madea M., McMean S., Manoj C., Menvielle M., Michaelis I., Olsen N., Rauberg J., Rother M., Sabaka T. J., Tanborn A., Toffner-Clausen L. and Thébault E., “International Geomagnetic Reference Field: The Eleventh Generation,” Geophysical Journal International, Vol. 183, No. 3, 2010, pp. 1216–1230. https://doi.org/10.1111/j.1365-246X.2010.04804.x CrossrefGoogle Scholar

  • [64] Jiang Y. F. and Lin Y. P., “Error Estimation of INS Ground Alignment Through Observability Analysis,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 28, No. 1, 1992, pp. 92–97. https://doi.org/10.1109/7.135435 Google Scholar

  • [65] Fang J. C. and Wang D. J., “A Fast Initial Alignment Method for Strapdown Inertial Navigation System on Stationary Base,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 32, No. 4, 1996, pp. 1501–1505. https://doi.org/10.1109/7.543871 Google Scholar

  • [66] Wu Y., Zhang H., Wu M., Hu X. and Hu D., “Observability of Strapdown Alignment: A Global Perspective,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 48, No. 1, 2012, pp. 78–102. https://doi.org/10.1109/TAES.2012.6129622 Google Scholar

  • [67] Wu J., “Real-Time Magnetometer Disturbance Estimation via Online Nonlinear Programming,” IEEE Sensors Journal, Vol. 19, No. 12, 2019, pp. 4405–4411. https://doi.org/10.1109/JSEN.2019.2901925 CrossrefGoogle Scholar

  • [68] Yu H., Wu W., Wu M., Yu M. and Hao M., “Stochastic Observability-Based Analytic Optimization of SINS Multiposition Alignment,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 51, No. 3, 2015, pp. 2181–2192. https://doi.org/10.1109/TAES.2015.130674 CrossrefGoogle Scholar

  • [69] Silva F. O., Hemerly E. M. and Leite Filho W. C., “On the Error State Selection for Stationary SINS Alignment and Calibration Kalman Filters—Part II: Observability/Estimability Analysis,” Sensors, Vol. 17, No. 439, 2017, pp. 1–34. https://doi.org/10.3390/s17030439 Google Scholar

  • [70] Yang Y. and Zhou Z., “An Analytic Solution to Wahba’s Problem,” Aerospace Science and Technology, Vol. 30, No. 1, 2013, pp. 46–49. https://doi.org/10.1016/j.ast.2013.07.002 CrossrefGoogle Scholar

  • [71] Britting K. R., Inertial Navigation Systems Analysis, Wiley, New York, 1971, Chap. 4. Google Scholar

  • [72] Brown R. G. and Hwang P. Y. C., Introduction to Random Signals and Applied Kalman Filtering with Matlab Exercises, CourseSmart Series, Wiley, Hoboken, NJ, 2012, Chap. 1. Google Scholar

  • [73] Oliveira A. M., Kuga H. K. and Carrarra V., “Air Bearing Platforms for Simulation of Spacecraft Attitude Control Systems,” Proceedings of the International Symposium on Dynamics Problems of Mechanics, ABCM: Brazilian Soc. of Mechanical Sciences and Engineering, Natal, Brazil, 2015, pp. 22–27. Google Scholar

  • [74] Silva F. O., Hemerly E. M., Leite Filho W. C. and Kuga H. K., “A Fast In-Field Coarse Alignment and Bias Estimation Method for Stationary Intermediate-Grade IMUs,” IEEE Transactions on Instrumentation and Measurement, Vol. 67, No. 4, 2018, pp. 831–838. https://doi.org/10.1109/TIM.2017.2789138 CrossrefGoogle Scholar

  • [75] Silva F. O., “Generalized Error Analysis of Analytical Coarse Alignment Formulations for Stationary SINS,” Aerospace Science and Technology, Vol. 79, No. 1, 2018, pp. 500–505. https://doi.org/10.1016/j.ast.2018.06.015 Google Scholar