Skip to main content
Skip to article control options
No AccessTechnical Notes

Linear Time/Parameter-Varying Models with Relative Orbit Elements Considering Continuous Controllability

Published Online:https://doi.org/10.2514/1.G008297
Free first page

References

  • [1] Zink M., Moreira A., Hajnsek I., Rizzoli P., Bachmann M., Kahle R., Fritz T., Huber M. and Krieger G., “TanDEM-X: 10 Years of Formation Flying Bistatic SAR Interferometry,” IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 14, 2021, pp. 3546–3565. https://doi.org/10.1109/JSTARS.2021.3062286 CrossrefGoogle Scholar

  • [2] Montenbruck O., Wermuth M. and Kahle R., “GPS Based Relative Navigation for the TanDEM-X Mission –First Flight Results,” Navigation, Vol. 58, No. 4, 2011, pp. 293–304. https://doi.org/10.1002/j.2161-4296.2011.tb02587.x CrossrefGoogle Scholar

  • [3] Gill E., D’Amico S. and Montenbruck O., “Autonomous Formation Flying for the PRISMA Mission,” Journal of Spacecraft and Rockets, Vol. 44, No. 3, 2007, pp. 671–681. https://doi.org/10.2514/1.23015 LinkGoogle Scholar

  • [4] D’Amico S., Ardaens J. S. and De Florio S., “Autonomous Formation Flying Based on GPS–PRISMA Flight Results,” Acta Astronautica, Vol. 82, No. 1, 2013, pp. 69–79. https://doi.org/10.1016/j.actaastro.2012.04.033 CrossrefGoogle Scholar

  • [5] Gaias G. and Ardaens J. S., “Flight Demonstration of Autonomous Noncooperative Rendezvous in Low Earth Orbit,” Journal of Guidance, Control, and Dynamics, Vol. 41, No. 6, 2018, pp. 1337–1354. https://doi.org/10.2514/1.G003239 LinkGoogle Scholar

  • [6] Gaias G., Ardaens J. S. and D’Amico S., “The Autonomous Vision Approach Navigation and Target Identification (AVANTI) Experiment: Objectives and Design,” 9th International ESA Conference on Guidance, Navigation and Control Systems, Porto, Portugal, 2014. Google Scholar

  • [7] Yamamoto T., Matsumoto J., Okamoto H., Yoshida R., Hoshino C. and Yamanaka K., “Pave the Way for Active Debris Removal Realization: JAXA Commercial Removal of Debris Demonstration (CRD2),” 8th European Conference on Space Debris, Vol. 8, 2021. Google Scholar

  • [8] D’Amico S. and Montenbruck O., “Proximity Operations of Formation-Flying Spacecraft Using an Eccentricity/Inclination Vector Separation,” Journal of Guidance, Control, and Dynamics, Vol. 29, No. 3, 2006, pp. 554–563. https://doi.org/10.2514/1.15114 LinkGoogle Scholar

  • [9] D’Amico S., “Autonomous Formation Flying in Low Earth Orbit,” Ph.D. Thesis, Delft Univ. of Technology, Delft, The Netherlands, 2010. Google Scholar

  • [10] Shuster S., Geller D. and Harris M., “Analytic Maneuver Sequence for Safety Ellipse Reconfigurations Using Relative Orbital Elements,” Journal of Guidance, Control, and Dynamics, Vol. 44, No. 9, 2021, pp. 1593–1606. https://doi.org/10.2514/1.G005698 LinkGoogle Scholar

  • [11] Borelli G., Gaias G. and Colombo C., “Safety in Forced Motion Guidance for Proximity Operations Based on Relative Orbital Elements,” AAS/AIAA 33rd Space Flight Mechanics Meeting, AAS Paper 23-142, 2023. Google Scholar

  • [12] Gaias G. and D’Amico S., “Impulsive Maneuvers for Formation Reconfiguration Using Relative Orbital Elements,” Journal of Guidance, Control, and Dynamics, Vol. 38, No. 6, 2015, pp. 1036–1049. https://doi.org/10.2514/1.G000189 LinkGoogle Scholar

  • [13] Schaub H. and Alfriend K. T., “J2 Invariant Relative Orbits for Spacecraft Formations,” Celestial Mechanics and Dynamical Astronomy, Vol. 79, No. 2, 2001, pp. 77–95. https://doi.org/10.1023/A:1011161811472 CrossrefGoogle Scholar

  • [14] Schaub H. and Alfriend K. T., “Impulsive Feedback Control to Establish Specific Mean Orbit Elements of Spacecraft Formations,” Journal of Guidance, Control, and Dynamics, Vol. 24, No. 4, 2001, pp. 739–745. https://doi.org/10.2514/2.4774 LinkGoogle Scholar

  • [15] Roscoe C. W. T., Westphal J. J., Griesbach J. D. and Schaub H., “Formation Establishment and Reconfiguration Using Differential Elements in J2-Perturbed Orbits,” Journal of Guidance, Control, and Dynamics, Vol. 38, No. 9, 2015, pp. 1725–1740. https://doi.org/10.2514/1.G000999 LinkGoogle Scholar

  • [16] Schweighart S. A. and Sedwick R. J., “High-Fidelity Linearized J2 Model for Satellite Formation Flight,” Journal of Guidance, Control, and Dynamics, Vol. 25, No. 6, 2002, pp. 1073–1080. https://doi.org/10.2514/2.4986 LinkGoogle Scholar

  • [17] Kuiack B. and Ulrich S., “Nonlinear Analytical Equations of Relative Motion on J2-Perturbed Eccentric Orbits,” Journal of Guidance, Control, and Dynamics, Vol. 41, No. 12, 2018, pp. 2666–2677. https://doi.org/10.2514/1.G003723 LinkGoogle Scholar

  • [18] Ardaens J.-S. and D’Amico S., “Spaceborne Autonomous Relative Control System for Dual Satellite Formations,” Journal of Guidance, Control and Dynamics, Vol. 32, No. 6, 2009, pp. 1859–1870. https://doi.org/10.2514/1.42855 LinkGoogle Scholar

  • [19] Ardaens J. S., D’Amico S., Kazeminejad B., Montenbruck O. and Gill E., “Spaceborne Autonomous and Ground-Based Relative Orbit Control for the TerraSAR-X/TanDEM-X Formation,” 20th International Symposium on Space Flight Dynamics, NASA/GSFC, Sept. 2007. Google Scholar

  • [20] Gaias G., Ardaens J.-S. and Montenbruck O., “Model of J2 Perturbed Satellite Relative Motion with Time-Varying Differential Drag,” Celestial Mechanics and Dynamical Astronomy, Vol. 123, No. 4, 2015, pp. 411–433. https://doi.org/10.1007/s10569-015-9643-2 CrossrefGoogle Scholar

  • [21] Koenig A. W., Guffanti T. and D’Amico S., “New State Transition Matrices for Spacecraft Relative Motion in Perturbed Orbits,” Journal of Guidance, Control, and Dynamics, Vol. 40, No. 7, 2017, pp. 1749–1768. https://doi.org/10.2514/1.G002409 LinkGoogle Scholar

  • [22] Chernick M. and D’Amico S., “New Closed-Form Solutions for Optimal Impulsive Control of Spacecraft Relative Motion,” Journal of Guidance, Control, and Dynamics, Vol. 1, No. 2, 2018, pp. 301–319. https://doi.org/10.2514/1.G002848 LinkGoogle Scholar

  • [23] Ben-Larbi M. K., Jusko T. and Stoll E., “Input-Output Linearized Spacecraft Formation Control via Differential Drag Using Relative Orbital Elements,” Advances in Space Research, Vol. 67, No. 11, 2021, pp. 3444–3461. https://doi.org/10.1016/j.asr.2020.12.005 CrossrefGoogle Scholar

  • [24] Gaias G., Colombo C. and Lara M., “Analytical Framework for Precise Relative Motion in Low Earth Orbits,” Journal of Guidance, Control, and Dynamics, Vol. 43, No. 5, 2020, pp. 915–927. https://doi.org/10.2514/1.G004716 LinkGoogle Scholar

  • [25] Miñan A. M., Scala F. and Colombo C., “Manoeuvre Planning Algorithm for Satellite Formations Using Mean Relative Orbital Elements,” Advances in Space Research, Vol. 71, No. 1, 2023, pp. 585–603. https://doi.org/10.1016/j.asr.2022.09.043 Google Scholar

  • [26] Di Mauro G., Bevilacqua R., Spiller D., Sullivan J. and D’Amico S., “Continuous Maneuvers for Spacecraft Formation Flying Reconfiguration Using Relative Orbit Elements,” Acta Astronautica, Vol. 153, Dec. 2018, pp. 311–326. https://doi.org/10.1016/j.actaastro.2018.01.043 CrossrefGoogle Scholar

  • [27] Gaias G. and Lovera M., “Trajectory Design for Proximity Operations: The Relative Orbital Elements’ Perspective,” Journal of Guidance, Control, and Dynamics, Vol. 44, No. 2, 2021, pp. 2294–2302. https://doi.org/10.2514/1.G006175 LinkGoogle Scholar

  • [28] Montenbruck O. and Gill E., Satellite Orbits: Models, Methods and Applications, 1st ed., Springer, Berlin, 2000. Google Scholar

  • [29] Brouwer D., “Solution of the Problem of Artificial Satellite Theory Without Drag,” Astronomical Journal, Vol. 64, 1959, pp. 378–396. https://doi.org/10.1086/107958 CrossrefGoogle Scholar

  • [30] Apkarian P., Gahinet P. and Becker G., “Self-Scheduled H Control of Linear Parameter-Varying Systems: A Design Example,” Automatica, Vol. 31, No. 9, 1995, pp. 1251–1261. https://doi.org/10.1016/0005-1098(95)00038-X CrossrefGoogle Scholar

  • [31] Kalman R., “Controllability of Linear Dynamical Systems,” Contributions to Differential Equations, 1963, pp. 189–213. Google Scholar

  • [32] Haessig D. A. and Friedland B., “State Dependent Differential Riccati Equation for Nonlinear Estimation and Control,” IFAC Proceedings, Vol. 35, No. 1, 2002, pp. 405–410. https://doi.org/10.3182/20020721-6-ES-1901.00229 CrossrefGoogle Scholar

  • [33] Hill G. W., “Researches in the Lunar Theory,” American Journal of Mathematics, Vol. 1, No. 1, 1878, pp. 5–26. https://doi.org/10.2307/2369430 CrossrefGoogle Scholar

  • [34] Clohessy W. H. and Wiltshire R. S., “Terminal Guidance System for Satellite Rendezvous,” Journal of the Aerospace Sciences, Vol. 27, No. 9, 1960, pp. 653–658. https://doi.org/10.2514/8.8704 LinkGoogle Scholar

  • [35] Anderson B. D. and Moore J. B., Optimal Control: Linear Quadratic Methods, Courier Corp., MA, 2007. Google Scholar

  • [36] Nakamura Y. and Hanafusa H., “Inverse Kinematic Solutions with Singularity Robustness for Robot Manipulator Control,” Journal of Dynamic Systems, Measurement, and Control, Vol. 108, No. 3, 1986, pp. 163–171. https://doi.org/10.1115/1.3143764 CrossrefGoogle Scholar

  • [37] Wie B., Bailey D. and Heiberg C., “Singularity Robust Steering Logic for Redundant Single-Gimbal Control Moment Gyros,” Journal of Guidance, Control, and Dynamics, Vol. 24, No. 5, 2001, pp. 865–872. https://doi.org/10.2514/2.4799 LinkGoogle Scholar

  • [38] Tedrake R., “LQR-Trees: Feedback Motion Planning on Sparse Randomized Trees,” Robotics: Science and Systems V, The MIT Press, 2009. Google Scholar

  • [39] Basu B. and Nagarajaiah S., “A Wavelet-Based Time-Varying Adaptive LQR Algorithm for Structural Control,” Engineering Structures, Vol. 30, No. 9, 2008, pp. 2470–2477. https://doi.org/10.1016/j.engstruct.2008.01.011 CrossrefGoogle Scholar

  • [40] Nazari M., Anthony W. M. and Butcher E., “Continuous Thrust Stationkeeping in Earth-Moon L1 Halo Orbits Based on LQR Control and Floquet Theory,” AIAA/AAS Astrodynamics Specialist Conference, San Diego, CA, Aug. 2014. Google Scholar

  • [41] Sasaki T., Shimomura T. and Schaub H., “Robust Attitude Control Using a Double-Gimbal Variable-Speed Control Moment Gyroscope,” Journal of Spacecraft and Rockets, Vol. 55, No. 5, 2018, pp. 1235–1247. https://doi.org/10.2514/1.A34120 LinkGoogle Scholar

  • [42] Sasaki T., Alcorn J., Schaub H. and Shimomura T., “Convex Optimization for Power Tracking of Double-Gimbal Variable-Speed Control Moment Gyroscopes,” Journal of Spacecraft and Rockets, Vol. 55, No. 3, 2018, pp. 541–551. https://doi.org/10.2514/1.A33944 LinkGoogle Scholar

  • [43] Sasaki T., Shimomura T., Pullen S. and Schaub H., “Attitude and Vibration Control with Double-Gimbal Variable-Speed Control Moment Gyros,” Acta Astronautica, Vol. 152, Nov. 2018, pp. 740–751. https://doi.org/10.1016/j.actaastro.2018.08.047 CrossrefGoogle Scholar