Skip to main content
Skip to article control options
No AccessFull-Length Papers

Model Reference Control for Reducing Pilot-Induced Oscillation Tendencies

Published Online:https://doi.org/10.2514/1.G008400

Lags between pilot inputs and aircraft responses may lead to a pilot–vehicle system entering into a pilot-induced oscillation. A model reference control element can compensate for these lags, avoiding pilot-induced oscillations and improving tracking performance. Neural network compensation drives the combined controller–plant system to exhibit a closed-loop response similar to that of an idealized system, immune to the factors that trigger pilot-induced oscillations. Actuator rate limiting has been a historically ubiquitous cause of pilot-induced oscillations; meanwhile, aeroelastic effects pose a threat to future lightweight, flexible aircraft designs. Model reference control can reduce pilot-induced oscillation tendencies caused by either of these factors. This paper presents the methods used to train the model reference controller, including conditions for system stability under model reference control. It then showcases results from a pair of simulation experiments applying the control design to compensate for rate limiting and aeroelasticity, respectively. Results demonstrate that the model reference control scheme reduces pilot-induced oscillation tendencies and improves closed-loop tracking performance.

References

  • [1] McRuer D. T., “Pilot-Induced Oscillations and Human Dynamic Behavior,” NASA CR-4683, July 1995. Google Scholar

  • [2] Pavel M. D., Masarati P., Gennaretti M., Jump M., Zaichik L., Dang-Vu B., Lu L., Yilmaz D., Quaranta G., Ionita A. and Serafini J., “Practices to Identify and Preclude Adverse Aircraft-and-Rotorcraft-Pilot Couplings—A Design Perspective,” Progress in Aerospace Sciences, Vol. 76, July 2015, pp. 55–89. https://doi.org/10.1016/j.paerosci.2015.05.002 CrossrefGoogle Scholar

  • [3] Mitchell D., Kish B. and Seo J., “A Flight Investigation of Pilot-Induced Oscillation Due to Rate Limiting,” IEEE Aerospace Conference Proceedings, IEEE, New York, Vol. 3, 1998, pp. 59–74. https://doi.org/10.1109/AERO.1998.685777 Google Scholar

  • [4] McRuer D. T., Droste C. S., Hansman J. R., Hess R. A., LeMaster D. P., Matthews S., McDonnell J. D., McWha J., Melvin W. W. and Pew R. W., “Varieties of Aircraft-Pilot Coupling Experience,” Aviation Safety and Pilot Control: Understanding and Preventing Unfavorable Pilot-Vehicle Interactions, National Academy Press, Washington, D.C., 1997, pp. 30–80. Google Scholar

  • [5] Mitchell D. and Klyde D., “Recommended Practices for Exposing Pilot-Induced Oscillations or Tendencies in the Development Process,” AIAA Paper 2004-6810, Nov. 2004. https://doi.org/10.2514/6.2004-6810 Google Scholar

  • [6] Gatley S. L., Turner M. C., Postlethwaite I. and Kumar A., “A Comparison of Rate-Limit Compensation Schemes for Pilot-Induced-Oscillation Avoidance,” Aerospace Science and Technology, Vol. 10, No. 1, 2006, pp. 37–47. https://doi.org/10.1016/j.ast.2005.07.004 CrossrefGoogle Scholar

  • [7] Liebst B. S., Chapa M. J. and Leggett D. B., “Nonlinear Prefilter to Prevent Pilot-Induced Oscillations Due to Actuator Rate Limiting,” Journal of Guidance, Control, and Dynamics, Vol. 25, No. 4, 2002, pp. 740–747. https://doi.org/10.2514/2.4941 LinkGoogle Scholar

  • [8] Smith J. W. and Edwards J. W., “Design of a Nonlinear Adaptive Filter for Suppression of Shuttle Pilot-Induced Oscillation Tendencies,” NASA TM-81349, April 1980. Google Scholar

  • [9] Klyde D. H. and McRuer D., “Smart-Cue and Smart-Gain Concepts to Alleviate Loss of Control,” Journal of Guidance, Control, and Dynamics, Vol. 32, No. 5, 2009, pp. 1409–1417. https://doi.org/10.2514/1.43156 LinkGoogle Scholar

  • [10] Yildiz Y. and Kolmanovsky I. V., “A Control Allocation Technique to Recover from Pilot-Induced Oscillations (CAPIO) Due to Actuator Rate Limiting,” Proceedings of the 2010 American Control Conference, ACC, Baltimore, MD, 2010, pp. 516–523. https://doi.org/10.1109/ACC.2010.5530869 Google Scholar

  • [11] Wang C., Santone M. and Cao C., “Pilot-Induced Oscillation Suppression by Using L1 Adaptive Control,” Journal of Control Science and Engineering, Vol. 2012, May 2012, pp. 1–7. https://doi.org/10.1155/2012/394791 Google Scholar

  • [12] Tran A. T., Sakamoto N., Kikuchi Y. and Mori K., “Pilot Induced Oscillation Suppression Controller Design via Nonlinear Optimal Output Regulation Method,” Aerospace Science and Technology, Vol. 68, Sept. 2017, pp. 278–286. https://doi.org/10.1016/j.ast.2017.05.010 CrossrefGoogle Scholar

  • [13] Cesnik C. E., Palacios R. and Reichenbach E. Y., “Reexamined Structural Design Procedures for Very Flexible Aircraft,” Journal of Aircraft, Vol. 51, No. 5, 2014, pp. 1580–1591. https://doi.org/10.2514/1.C032464 LinkGoogle Scholar

  • [14] Oelker H.-C., Cox T., Duncan J., Firat M. and Topbaş E., “Flight Test Techniques for the Assessment of Fixed-Wing Aircraft Handling Techniques,” NATO Science and Tehcnology Office STO–AG-300-V33, July. 2021. Google Scholar

  • [15] Schwanz R. C., Cerr J. and Blair M., “Dynamic Modeling Uncertainty Affecting Control System Design,” AIAA Paper 84-1057-CP, May 1984. https://doi.org/10.2514/6.1984-1057 Google Scholar

  • [16] Yen W. Y. and Swaim R. L., “Effects of Dynamic Aeroelasticity on Handling Qualities and Pilot Rating,” NASA CR-155339, Dec. 1977. Google Scholar

  • [17] Ashkenas I. L., Madaleno R. E. and McRuer D. T., “Flexible Aircraft Flying and Ride Qualities,” First Annual NASA Aircraft Controls Workshop, NASA Langley Research Center, Hampton, VA, 1983, pp. 69–92. Google Scholar

  • [18] Drewiacki D., Silvestre F. J. and Neto A. B. G., “Influence of Airframe Flexibility on Pilot-Induced Oscillations,” Journal of Guidance, Control, and Dynamics, Vol. 42, No. 7, 2019, pp. 1537–1550. https://doi.org/10.2514/1.G004024 LinkGoogle Scholar

  • [19] Halsey S. A., Goodall R. M., Caldwell B. D. and Pearson J. T., “Filtering Structural Modes in Aircraft: Notch Filters vs. Kalman Filters,” 16th Triennial World Congress, International Federation of Automatic Control, Prague, 2005, pp. 205–210. Google Scholar

  • [20] Hagan M. T., Demuth H. B. and Jesús O. D., “An Introduction to the Use of Neural Networks in Control Systems,” International Journal of Robust and Nonlinear Control, Vol. 12, No. 11, 2002, pp. 959–985. https://doi.org/10.1002/rnc.727 CrossrefGoogle Scholar

  • [21] Newton L. J. and Kroo I., “Model Reference Control for Reducing Pilot-Induced Oscillation Tendencies due to Actuator Rate Limits,” AIAA Paper 2023-2512, Jan. 2023.https://doi.org/10.2514/6.2023-2512 Google Scholar

  • [22] Newton L. J. and Kroo I., “Model Reference Control for Reducing Pilot-Induced Oscillation Tendencies Due to Aeroelastic Effects,” AIAA Paper 2023-3319, June 2023. https://doi.org/10.2514/6.2023-3319 Google Scholar

  • [23] McRuer D. T. and Jex H. R., “A Review of Quasi-Linear Pilot Models,” IEEE Transactions on Human Factors in Electronics, Vol. HFE-8, No. 3, 1967, pp. 231–249. https://doi.org/10.1109/THFE.1967.234304 CrossrefGoogle Scholar

  • [24] Xu S., Tan W., Efremov A. V., Sun L. and Qu X., “Review of Control Models for Human Pilot Behavior,” Annual Reviews in Control, Vol. 44, 2017, pp. 274–291. https://doi.org/10.1016/j.arcontrol.2017.09.009 CrossrefGoogle Scholar

  • [25] Mitchell D. G. and Klyde D. H., “This Is Pilot Gain,” AIAA Paper 2019-0562, Jan. 2019. https://doi.org/10.2514/6.2019-0562 Google Scholar

  • [26] Mitchell D., “Identifying the Pilot in Pilot-Induced Oscillations,” AIAA Paper 2000-3985, Aug. 2000. https://doi.org/10.2514/6.2000-3985 Google Scholar

  • [27] Klyde D. H., McRuer D. T. and Myers T. T., “Unified Pilot-Induced Oscillation Theory Volume I: PIO Analysis with Linear and Nonlinear Effective Vehicle Characteristics, Including Rate Limiting,” Wright Lab. WL–TR-96-3028, Dec. 1995. Google Scholar

  • [28] Mitchell D. G., Hoh R. H., Atencio A. and Key D. L., “Ground Based Simulation Evaluation of the Effects of Time Delays and Motion on Rotorcraft Handling Qualities,” United States Army Aviation Systems Command TR 91-A-010, Jan. 1992. Google Scholar

  • [29] Klyde D. H., Pitoniak S. P., Schulze P. C., Ruckel P., Rigsby J., Fegely C. E., Xin H., Fell W. C., Brewer R., Conway F. and et al., “Piloted Simulation Evaluation of Tracking Mission Task Elements for the Assessment of High-Speed Handling Qualities,” Journal of the American Helicopter Society, Vol. 65, No. 3, 2020, pp. 1–23. https://doi.org/10.4050/JAHS.65.032010 CrossrefGoogle Scholar

  • [30] Hagan M. T. and Menhaj M. B., “Training Feedforward Networks with the Marquardt Algorithm,” IEEE Transactions on Neural Networks, Vol. 5, No. 6, 1994, pp. 989–993. https://doi.org/10.1109/72.329697 CrossrefGoogle Scholar

  • [31] Foresee F. D. and Hagan M. T., “Gauss-Newton Approximation to Bayesian Learning,” Proceedings of International Conference on Neural Networks (ICNN’97), IEEE, New York, 1997, pp. 1930–1935. https://doi.org/10.1109/ICNN.1997.614194 Google Scholar

  • [32] Waszak M. R. and Schmidt D. K., “Flight Dynamics of Aeroelastic Vehicles,” Journal of Aircraft, Vol. 25, No. 6, 1988, pp. 563–571. https://doi.org/10.2514/3.45623 LinkGoogle Scholar

  • [33] Mitchell D. G. and Hoh R. H., “Development of Methods and Devices to Predict and Prevent Pilot-Induced Oscillations,” Air Force Research Lab. AFRL-VA-WP-TR-2000-3046, Jan. 2000. Google Scholar

  • [34] Mitchell D. G., Arencibia A. and Munoz S., “Real-Time Detection of Pilot-Induced Oscillations,” AIAA Paper 2004-4700, Aug. 2004. https://doi.org/10.2514/6.2004-4700 Google Scholar

  • [35] Mitchell D. G. and Klyde D. H., “Identifying a Pilot-Induced Oscillation Signature: New Techniques Applied to Old Problems,” Journal of Guidance, Control, and Dynamics, Vol. 31, No. 1, 2008, pp. 215–224. https://doi.org/10.2514/1.31470 LinkGoogle Scholar

  • [36] Suliman S. M. T., Yilmaz D. and Pavel M. D., “Harmonizing Real-Time Oscillation Verifier (ROVER) with Handling Qualities Assessment for Enhanced Rotorcraft Pilot Couplings Detection,” Proceedings of the 38th European Rotorcraft Forum, European Rotorcraft Forum, Amsterdam, 2012, pp. 1252–1265. Google Scholar

  • [37] Teper G. L., “Aircraft Stability and Control Data,”NASA CR-96008, April 1969. Google Scholar

  • [38] Mitchell D. G., Hoh R. H., Aponso B. L. and Klyde D. H., “The Measurement and Prediction of Pilot-in-the-Loop Oscillations,” AIAA Paper 1994-3670, Aug. 1994. https://doi.org/10.2514/6.1994-3670 Google Scholar

  • [39] Johnson D. A., “Suppression of Pilot-Induced Oscillation (PIO),” Air Force Inst. of Technology AFIT/GAE/ENY/02–1, March 2002. Google Scholar

  • [40] Stevens B. L., Lewis F. L. and Johnson E. N., “F-16 Model,” Aircraft Control and Simulation, 3rd ed., Wiley, Hoboken, NJ, 2016, pp. 714–722. Google Scholar

  • [41] Smith J. W. and Berry D. T., “Analysis of Longitudinal Pilot-Induced Oscillation Tendencies of YF-12 Aircraft,” NASA TN D-7900, Feb. 1975. Google Scholar

  • [42] Albano E. and Rodden W. P., “A Doublet Lattice Method for Calculating Lift Distributions on Oscillating Surfaces in Subsonic Flows,” AIAA Journal, Vol. 7, No. 2, 1968, pp. 279–285. https://doi.org/10.2514/3.5086 LinkGoogle Scholar

  • [43] Karpel M., “Design for Active Flutter Suppression and Gust Alleviation Using State-Space Aeroelastic Modeling,” Journal of Aircraft, Vol. 19, No. 3, 1982, pp. 221–227. https://doi.org/10.2514/3.57379 LinkGoogle Scholar

  • [44] Smith R. H. and Geddes N. D., “Handling Quality Requirements for Advanced Aircraft Design: Longitudinal Mode,” Air Force Flight Dynamics Lab. AFFDL-TR-78-154, Aug. 1979. Google Scholar