Skip to main content
Skip to article control options
No AccessFull-Length Paper

Prediction of Transonic Buffet by Delayed Detached-Eddy Simulation

Published Online:https://doi.org/10.2514/1.J052873

A delayed detached-eddy simulation of the transonic buffet over a supercritical airfoil is performed. The turbulence modeling approach is based on a one-equation closure, and the results are compared to an unsteady Reynolds-averaged Navier–Stokes simulation using the same baseline model as well as experimental data. The delayed detached-eddy simulation successfully predicts the self-sustained unsteady shock-wave/boundary-layer interaction associated with buffet. When separation occurs, the flow exhibits alternate vortex shedding and a spanwise undulation. The method also captures secondary fluctuations in the boundary layer that are not predicted by unsteady Reynolds-averaged Navier–Stokes simulation. A map of flow separation emphasizes the differences between the delayed detached-eddy simulation and unsteady Reynolds-averaged Navier–Stokes flow topologies. Statistical pressure distributions and velocity profiles help assess the performance of each model. They indicate that the delayed detached-eddy simulation tends to overestimate the flow unsteadiness near the trailing edge. Instantaneous distributions of Reynolds-averaged Navier–Stokes and large-eddy simulation regions during buffet show that the delayed detached-eddy simulation enforces Reynolds-averaged Navier–Stokes mode near the airfoil even when the boundary layer gets very thick.

References

  • [1] McDevitt J. B., Levy L. L. and Deiwert G. S., “Transonic Flow About a Thick Circular-Arc Airfoil,” AIAA Journal, Vol. 14, No. 5, 1976, pp. 606–613. doi:https://doi.org/10.2514/3.61402 AIAJAH 0001-1452 LinkGoogle Scholar

  • [2] Seegmiller H. L., Marvin J. G. and Levy L. L., “Steady and Unsteady Transonic Flow,” AIAA Journal, Vol. 16, No. 12, 1978, pp. 1262–1270. doi:https://doi.org/10.2514/3.61042 AIAJAH 0001-1452 LinkGoogle Scholar

  • [3] Roos F. W., “Some Features of the Unsteady Pressure Field in Transonic Airfoil Buffeting,” Journal of Aircraft, Vol. 17, No. 11, 1980, pp. 781–788. doi:https://doi.org/10.2514/3.57965 JAIRAM 0021-8669 LinkGoogle Scholar

  • [4] Lee B. H. K. and Ohman L. H., “Unsteady Pressures and Forces During Transonic Buffeting of a Supercritical Airfoil,” Journal of Aircraft, Vol. 21, No. 8, 1984, pp. 439–441. doi:https://doi.org/10.2514/3.44987 JAIRAM 0021-8669 LinkGoogle Scholar

  • [5] Lee B. H. K. and Tang F. C., “Transonic Buffet of a Supercritical Airfoil and Trailing-Edge Flap,” Journal of Aircraft, Vol. 26, No. 5, 1989, pp. 459–464. doi:https://doi.org/10.2514/3.45785 JAIRAM 0021-8669 LinkGoogle Scholar

  • [6] Jacquin L., Molton P., Deck S., Maury B. and Soulevant D., “Experimental Study of Shock Oscillation over a Transonic Supercritical Profile,” AIAA Journal, Vol. 47, No. 9, 2009, pp. 1985–1994. doi:https://doi.org/10.2514/1.30190 AIAJAH 0001-1452; also 35th AIAA Fluid Dynamics Conference and Exhibit, AIAA Paper  2005-4902, June 2005. LinkGoogle Scholar

  • [7] Lee B. H. K., “Oscillatory Shock Motion Caused by Transonic Shock Boundary-Layer Interaction,” AIAA Journal, Vol. 28, No. 5, 1990, pp. 942–944. doi:https://doi.org/10.2514/3.25144 AIAJAH 0001-1452 LinkGoogle Scholar

  • [8] Crouch J. D., Garbaruk A., Magidov D. and Travin A., “Origin of Transonic Buffet on Aerofoils,” Journal of Fluid Mechanics, Vol. 628, 2009, pp. 357–369. doi:https://doi.org/10.1017/S0022112009006673 JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [9] Levy L. L., “Experimental and Computational Steady and Unsteady Transonic Flows about a Thick Airfoil,” AIAA Journal, Vol. 16, No. 6, 1978, pp. 564–572. doi:https://doi.org/10.2514/3.60935 AIAJAH 0001-1452 LinkGoogle Scholar

  • [10] Bouhadji A. and Braza M., “Organised Modes and Shock–Vortex Interaction in Unsteady Viscous Transonic Flows Around an Aerofoil: Part 1: Mach Number Effect,” Computers & Fluids, Vol. 32, No. 9, 2003, pp. 1233–1260. CrossrefGoogle Scholar

  • [11] Bouhadji A. and Braza M., “Organised Modes and Shock–Vortex Interaction in Unsteady Viscous Transonic Flows Around an Aerofoil: Part 2: Reynolds Number Effect,” Computers & Fluids, Vol. 32, No. 9, 2003, pp. 1261–1281. CrossrefGoogle Scholar

  • [12] Barakos G. and Drikakis D., “Numerical Simulation of Transonic Buffet Flows Using Various Turbulence Closures,” International Journal of Heat and Fluid Flow, Vol. 21, No. 5, 2000, pp. 620–626. doi:https://doi.org/10.1016/S0142-727X(00)00053-9 IJHFD2 0142-727X CrossrefGoogle Scholar

  • [13] Xiao Q. and Tsai H. M., “Numerical Study of Transonic Buffet on a Supercritical Airfoil,” AIAA Journal, Vol. 44, No. 3, 2006, pp. 620–628. doi:https://doi.org/10.2514/1.16658 AIAJAH 0001-1452 LinkGoogle Scholar

  • [14] Thiery M. and Coustols E., “Numerical Prediction of Shock Induced Oscillations over a 2D Airfoil: Influence of Turbulence Modelling and Test Section Walls,” International Journal of Heat and Fluid Flow, Vol. 27, 2006, pp. 661–670. doi:https://doi.org/10.1016/j.ijheatfluidflow.2006.02.013 IJHFD2 0142-727X CrossrefGoogle Scholar

  • [15] Iovnovich M. and Raveh D. E., “Reynolds-Averaged Navier–Stokes Study of the Shock-Buffet Instability Mechanism,” AIAA Journal, Vol. 50, No. 4, 2012, pp. 880–890. doi:https://doi.org/10.2514/1.J051329 AIAJAH 0001-1452 LinkGoogle Scholar

  • [16] Fröhlich J. and von Terzi D., “Hybrid LES/RANS Methods for the Simulation of Turbulent Flows,” Progress in Aerospace Sciences, Vol. 44, No. 5, 2008, pp. 349–377. doi:https://doi.org/10.1016/j.paerosci.2008.05.001 PAESD6 0376-0421 CrossrefGoogle Scholar

  • [17] Peng S.-H., Doerffer P. and Haase W. eds., Progress in Hybrid RANS–LES Modelling, Vol. 111, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Springer, Berlin, Heidelberg, 2010. CrossrefGoogle Scholar

  • [18] Fu S., Haase W., Peng S.-H. and Schwamborn D. eds., Progress in Hybrid RANS–LES Modelling, Vol. 117, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Springer, Berlin, Heidelberg, 2012. CrossrefGoogle Scholar

  • [19] Deck S., “Numerical Computation of Transonic Buffet over a Supercritical Airfoil,” AIAA Journal, Vol. 43, No. 7, 2005, pp. 1556–1566. doi:https://doi.org/10.2514/1.9885 AIAJAH 0001-1452 LinkGoogle Scholar

  • [20] Spalart P. R., Deck S., Shur M. L., Squires K. D., Strelets M. K. and Travin A., “A New Version of Detached-Eddy Simulation, Resistant to Ambiguous Grid Densities,” Theoretical and Computational Fluid Dynamics, Vol. 20, No. 3, 2006, pp. 181–195. doi:https://doi.org/10.1007/s00162-006-0015-0 TCFDEP 0935-4964 CrossrefGoogle Scholar

  • [21] Spalart P. R., Jou W.-H., Strelets M. and Allmaras S., “Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES Approach,” Advances in LES/DNS, edited by Liu C. and Liu Z., Greyden Press, Louisiana Tech Univ., Ruston, LA, 1997, pp. 137–147. Google Scholar

  • [22] Spalart P. R. and Allmaras S. R., “A One-Equation Turbulence Model for Aerodynamic Flows,” La Recherche Aérospatiale, Vol. 1, 1994, pp. 5–21. Google Scholar

  • [23] Edwards J. R. and Chandra S., “Comparison of Eddy Viscosity-Transport Turbulence Models for Three-Dimensional, Shock-Separated Flowfields,” AIAA Journal, Vol. 34, No. 9, 1996, pp. 756–763. doi:https://doi.org/10.2514/3.13137 AIAJAH 0001-1452 LinkGoogle Scholar

  • [24] Rung T., Bunge U., Schatz M. and Thiele F., “Restatement of the Spalart–Allmaras Eddy-Viscosity Model in Strain-Adaptive Formulation,” AIAA Journal, Vol. 41, No. 7, 2003, pp. 1396–1399. doi:https://doi.org/10.2514/2.2089 AIAJAH 0001-1452 LinkGoogle Scholar

  • [25] Spalart P. R., “Trends in Turbulence Treatments,” Fluids 2000 Conference. and Exhibit, AIAA Paper  2000-2306, June 2000. LinkGoogle Scholar

  • [26] Menter F. R., “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications,” AIAA Journal, Vol. 32, No. 8, 1994, pp. 1598–1605. doi:https://doi.org/10.2514/3.12149 AIAJAH 0001-1452 LinkGoogle Scholar

  • [27] Wilcox D. C., “Formulation of the k-ω Turbulence Model Revisited,” AIAA Journal, Vol. 46, No. 11, 2008, pp. 2823–2838. doi:https://doi.org/10.2514/1.36541 AIAJAH 0001-1452 LinkGoogle Scholar

  • [28] Chien K.-Y., “Predictions of Channel and Boundary-Layer Flows with a Low-Reynolds-Number Turbulence Model,” AIAA Journal, Vol. 20, No. 1, 1982, pp. 33–38. doi:https://doi.org/10.2514/1.36541 AIAJAH 0001-1452 LinkGoogle Scholar

  • [29] Shur M., Spalart P., Strelets M. and Travin A., “Detached-Eddy Simulation of an Airfoil at High Angle of Attack,” Engineering Turbulence Modelling and Experiments, Vol. 4, 1999, pp. 669–678. CrossrefGoogle Scholar

  • [30] Vos J. B., Rizzi A. W., Corjon A., Chaput E. and Soinne E., “Recent Advances in Aerodynamics Inside the NSMB (Navier Stokes Multi Block) Consortium,” 36th AIAA Aerospace Sciences Meeting and Exhibit, AIAA Paper  1998-0225, Jan. 1998. LinkGoogle Scholar

  • [31] Spalart P. R. and Rumsey C. L., “Effective Inflow Conditions for Turbulence Models in Aerodynamic Calculations,” AIAA Journal, Vol. 45, No. 10, 2007, pp. 2544–2553. doi:https://doi.org/10.2514/1.29373 AIAJAH 0001-1452 LinkGoogle Scholar

  • [32] Alshabu A. and Olivier H., “Unsteady Wave Propagation Phenomena on a Supercritical Airfoil,” AIAA Journal, Vol. 46, No. 8, 2008, pp. 2066–2073. doi:https://doi.org/10.2514/1.35516 AIAJAH 0001-1452 LinkGoogle Scholar

  • [33] Fung Y. C., An Introduction to the Theory of Aeroelasticity, Dover, New York, 2002, pp. 312–313. Google Scholar

  • [34] Bourdet S., Bouhadji A., Braza M. and Thiele F., “Direct Numerical Simulation of the Three-Dimensional Transition to Turbulence in the Transonic Flow around a Wing,” Flow, Turbulence and Combustion, Vol. 71, Nos. 1–4, 2003, pp. 203–220. doi:https://doi.org/10.1023/B:APPL.0000014932.28421.9e FTCOF9 1386-6184 CrossrefGoogle Scholar

  • [35] Williamson C. H. K., “Three-Dimensional Wake Transition,” Journal of Fluid Mechanics, Vol. 328, 1996, pp. 345–407. doi:https://doi.org/10.1017/S0022112096008750 JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [36] Persillon H. and Braza M., “Physical Analysis of the Transition to Turbulence in the Wake of a Circular Cylinder by Three-Dimensional Navier–Stokes Simulation,” Journal of Fluid Mechanics, Vol. 365, 1998, pp. 23–88. doi:https://doi.org/10.1017/S0022112098001116 JFLSA7 0022-1120 CrossrefGoogle Scholar