Skip to main content
Skip to article control options
No AccessFull-Length Paper

Evaluation of Geometrically Nonlinear Reduced-Order Models with Nonlinear Normal Modes

Published Online:https://doi.org/10.2514/1.J053838

Several reduced-order modeling strategies have been developed to create low-order models of geometrically nonlinear structures from detailed finite element models, allowing one to compute the dynamic response of the structure at a dramatically reduced cost. However, the parameters of these reduced-order models are estimated by applying a series of static loads to the finite element model, and the quality of the reduced-order model can be highly sensitive to the amplitudes of the static load cases used and to the type/number of modes used in the basis. This paper proposes to combine reduced-order modeling and numerical continuation to estimate the nonlinear normal modes of geometrically nonlinear finite element models. Not only does this make it possible to compute the nonlinear normal modes far more quickly than existing approaches, but the nonlinear normal modes are also shown to be an excellent metric by which the quality of the reduced-order model can be assessed. Hence, the second contribution of this work is to demonstrate how nonlinear normal modes can be used as a metric by which nonlinear reduced-order models can be compared. Various reduced-order models with hardening nonlinearities are compared for two different structures to demonstrate these concepts: a clamped–clamped beam model, and a more complicated finite element model of an exhaust panel cover.

References

  • [1] Gordon R. W. and Hollkamp J. J., “Reduced-Order Models for Acoustic Response Prediction,” U.S. Air Force Research Lab. Rept.  RB-WP-TR-2011-3040, July 2011. Google Scholar

  • [2] Tzong G. and Liguore S. L., “Verification Studies on Hypersonic Structure Thermal/Acoustic Response and Life Prediction Methods,” 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper  2013-1664, 2013. LinkGoogle Scholar

  • [3] Peeters M., Viguié R., Sérandour G., Kerschen G. and Golinval J. C., “Nonlinear Normal Modes, Part II: Toward a Practical Computation Using Numerical Continuation Techniques,” Mechanical Systems and Signal Processing, Vol. 23, No. 1, 2009, pp. 195–216. doi:https://doi.org/10.1016/j.ymssp.2008.04.003 CrossrefGoogle Scholar

  • [4] Kuether R. J. and Allen M. S., “A Numerical Approach to Directly Compute Nonlinear Normal Modes of Geometrically Nonlinear Finite Element Models,” Mechanical Systems and Signal Processing, Vol. 46, No. 1, 2014, pp. 1–15. doi:https://doi.org/10.1016/j.ymssp.2013.12.010 CrossrefGoogle Scholar

  • [5] Rosenberg R. M., “Normal Modes of Nonlinear Dual-Mode Systems,” Journal of Applied Mechanics, Vol. 27, No. 2, 1960, pp. 263–268. doi:https://doi.org/10.1115/1.3643948 CrossrefGoogle Scholar

  • [6] Vakakis A. F., “Non-Linear Normal Modes (NNMs) and Their Applications in Vibration Theory: An Overview,” Mechanical Systems and Signal Processing, Vol. 11, No. 1, 1997, pp. 3–22. doi:https://doi.org/10.1006/mssp.1996.9999 CrossrefGoogle Scholar

  • [7] Kerschen G., Peeters M., Golinval J. C. and Vakakis A. F., “Nonlinear Normal Modes. Part I. A Useful Framework for the Structural Dynamicist,” Mechanical Systems and Signal Processing, Vol. 23, No. 1, 2009, pp. 94–170. doi:https://doi.org/10.1016/j.ymssp.2008.04.002 CrossrefGoogle Scholar

  • [8] Ardeh H. A. and Allen M. S., “Investigating Cases of Jump Phenomena in a Nonlinear Oscillatory System,” Proceedings of the 31st International Modal Analysis Conference (IMAC XXXI), Soc. of Experimental Mechanics, Garden Grove, CA, 2013. Google Scholar

  • [9] Peeters M., Kerschen G. and Golinval J. C., “Dynamic Testing of Nonlinear Vibrating Structures Using Nonlinear Normal Modes,” Journal of Sound and Vibration, Vol. 330, No. 3, 2011, pp. 486–509. doi:https://doi.org/10.1016/j.jsv.2010.08.028 CrossrefGoogle Scholar

  • [10] Hollkamp J. J., Gordon R. W. and Spottswood S. M., “Nonlinear Modal Models for Sonic Fatigue Response Prediction: A Comparison of Methods,” Journal of Sound and Vibration, Vol. 284, Nos. 3–5, 2005, pp. 63–1145. doi:https://doi.org/10.1016/j.jsv.2004.08.036 CrossrefGoogle Scholar

  • [11] Mignolet M. P., Przekop A., Rizzi S. A. and Spottswood S. M., “A Review of Indirect/Non-Intrusive Reduced Order Modeling of Nonlinear Geometric Structures,” Journal of Sound and Vibration, Vol. 332, No. 10, 2013, pp. 2437–2460. doi:https://doi.org/10.1016/j.jsv.2012.10.017 CrossrefGoogle Scholar

  • [12] Nash M., “Nonlinear Structural Dynamics by Finite Element Modal Synthesis,” Ph.D. Dissertation, Univ. of London, Imperial College, London, 1977. Google Scholar

  • [13] Shi Y. and Mei C., “A Finite Element Time Domain Modal Formulation for Large Amplitude Free Vibrations of Beams and Plates,” Journal of Sound and Vibration, Vol. 193, No. 2, 1996, pp. 453–464. doi:https://doi.org/10.1006/jsvi.1996.0295 CrossrefGoogle Scholar

  • [14] Tiso P., Jansen E. and Abdalla M., “Reduction Method for Finite Element Nonlinear Dynamic Analysis of Shells,” AIAA Journal, Vol. 49, No. 10, 2011, pp. 2295–2304. doi:https://doi.org/10.2514/1.j051003 LinkGoogle Scholar

  • [15] Ward P., “Steady State Nonlinear Dynamics Using Finite Elements,” Ph.D. Dissertation, Univ. of London, Imperial College, London, 1977. Google Scholar

  • [16] Segalman D. J. and Dohrmann C. R., “A Method for Calculating the Dynamics of Rotating Flexible Structures, Part 1: Derivation,” Journal of Vibration and Acoustics, Vol. 118, No. 3, 1996, pp. 313–317. doi:https://doi.org/10.1115/1.2888183 CrossrefGoogle Scholar

  • [17] Segalman D. J., Dohrmann C. R. and Slavin A. M., “A Method for Calculating the Dynamics of Rotating Flexible Structures, Part 2: Example Calculations,” Journal of Vibration and Acoustics, Vol. 118, No. 3, 1996, pp. 318–322. doi:https://doi.org/10.1115/1.2888184 CrossrefGoogle Scholar

  • [18] Muravyov A. A. and Rizzi S. A., “Determination of Nonlinear Stiffness with Application to Random Vibration of Geometrically Nonlinear Structures,” Computers and Structures, Vol. 81, No. 15, 2003, pp. 1513–1523. doi:https://doi.org/10.1016/s0045-7949(03)00145-7 CrossrefGoogle Scholar

  • [19] Mignolet M. P., Radu A. G. and Gao X., “Validation of Reduced Order Modeling for the Prediction of the Response and Fatigue Life of Panels Subjected to Thermo-Acoustic Effects,” Proceedings of the Eighth International Conference on Recent Advances in Structural Dynamics [CD-ROM], The Inst. of Sound and Vibration, South Hampton, England, U.K., 2003. Google Scholar

  • [20] Hollkamp J. J., Gordon R. W. and Spottswood S. M., “Nonlinear Sonic Fatigue Response Prediction from Finite Element Modal Models: A Comparison with Experiments,” 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper  2003-1709, 2003. LinkGoogle Scholar

  • [21] McEwan M. I., Wright J. R., Cooper J. E. and Leung A. Y. T., “A Combined Modal/Finite Element Analysis Technique for the Dynamic Response of a Non-Linear Beam to Harmonic Excitation,” Journal of Sound and Vibration, Vol. 243, No. 4, 2001, pp. 601–624. doi:https://doi.org/10.1006/jsvi.2000.3434 CrossrefGoogle Scholar

  • [22] Hollkamp J. J. and Gordon R. W., “Reduced-Order Models for Nonlinear Response Prediction: Implicit Condensation and Expansion,” Journal of Sound and Vibration, Vol. 318, No. 4, 2008, pp. 1139–1153. doi:https://doi.org/10.1016/j.jsv.2008.04.035 CrossrefGoogle Scholar

  • [23] Gordon R. W., Hollkamp J. J. and Spottswood S. M., “Nonlinear Response of a Clamped-Clamped Beam to Random Base Excitation,” Proceedings of the Eighth International Conference on Recent Advances in Structural Dynamics [CD-ROM], The Inst. of Sound and Vibration, Southampton, England, U.K., 2003. Google Scholar

  • [24] Przekop A., Guo X. and Rizzi S. A., “Alternative Modal Basis Selection Procedures for Reduced-Order Nonlinear Random Response Simulation,” Journal of Sound and Vibration, Vol. 331, No. 17, 2012, pp. 4005–4024. doi:https://doi.org/10.1016/j.jsv.2012.03.034 CrossrefGoogle Scholar

  • [25] Rizzi S. A. and Przekop A., “System Identification-Guided Basis Selection for Reduced-Order Nonlinear Response Analysis,” Journal of Sound and Vibration, Vol. 315, No. 3, 2008, pp. 467–485. doi:https://doi.org/10.1016/j.jsv.2007.12.031 CrossrefGoogle Scholar

  • [26] Schoneman J. D., Allen M. S. and Kuether R. J., “Relationships Between Nonlinear Normal Modes and Response to Random Inputs,” 55th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper  2014-1514, 2014. LinkGoogle Scholar

  • [27] Lee Y. S., Kerschen G., Vakakis A. F., Panagopoulos P., Bergman L. and McFarland D. M., “Complicated Dynamics of a Linear Oscillator with a Light, Essentially Nonlinear Attachment,” Physica D: Nonlinear Phenomena, Vol. 204, Nos. 1–2, 2005, pp. 41–69. doi:https://doi.org/10.1016/j.physd.2005.03.014 CrossrefGoogle Scholar

  • [28] Rizzi S. A. and Przekop A., “The Effect of Basis Selection on Static and Random Acoustic Response Prediction Using a Nonlinear Modal Simulation,” NASA Rept.  TP-2005-213943, Dec. 2005. Google Scholar

  • [29] Rizzi S. A. and Przekop A., “Estimation of Sonic Fatigue by Reduced-Order Finite Element Based Analyses,” Proceedings of the Ninth International Conference on Recent Advances in Structural Dynamics [CD-ROM], The Inst. of Sound and Vibration, Southampton, England, U.K., 2006. Google Scholar

  • [30] Gordon R. W. and Hollkamp J. J., “Reduced-Order Modeling of the Random Response of Curved Beams using Implicit Condensation,” 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper  2006-1926, 2006. LinkGoogle Scholar

  • [31] Spottswood S. M., Gordon R. W. and Hollkamp J. J., “On the Use of Reduced-Order Models for a Shallow Curved Beam under Combined Loading,” 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper  2008-2235, 2008. LinkGoogle Scholar

  • [32] Gordon R. W. and Hollkamp J. J., “Reduced-Order Models for Acoustic Response Prediction of a Curved Panel,” 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, AIAA Paper  2011-2081, 2011. LinkGoogle Scholar