Skip to main content
Skip to article control options
No AccessRegular Articles

Multiscale Vortex Characteristics of Dynamic Stall from Empirical Mode Decomposition

Published Online:https://doi.org/10.2514/1.J057800

The multiscale development of dynamic stall was studied using a scale-based modal analysis technique. Time-resolved velocity field data around an airfoil during dynamic stall were used for this analysis, with experimental conditions corresponding to Rec=9.2×105 and k=0.05. Intrinsic mode functions were determined by a multivariate, multidimensional empirical mode decomposition method, which ensures mode alignment between velocity components and modal dependency on the full spatiotemporal flowfield. Individual intrinsic mode functions were linked to physically significant phenomena in the flowfield, including the formation of vortical structures due to the Kelvin–Helmholtz instability, interactions between shear-layer vortices leading to vortex pairing, and ultimately shear-layer roll-up and the formation of the dynamic stall vortex. In addition to qualitatively describing these flow structures and interactions, their characteristic length and time scales within the intrinsic mode functions were quantified. These quantitative measures were found to be consistent with time and length scales reported in the literature on experimental investigations of canonical fluid dynamic processes.

References

  • [1] Ham N. D., “Aerodynamic Loading on a Two-Dimensional Airfoil During Dynamic Stall,” AIAA Journal, Vol. 6, No. 10, 1968, pp. 1927–1934. doi:https://doi.org/10.2514/3.4902 AIAJAH 0001-1452 LinkGoogle Scholar

  • [2] McCroskey W. J., Carr L. W. and McAlister K. W., “Dynamic Stall Experiments on Oscillating Airfoils,” AIAA Journal, Vol. 14, No. 1, 1976, pp. 57–63. doi:https://doi.org/10.2514/3.61332 AIAJAH 0001-1452 LinkGoogle Scholar

  • [3] Carr L. W., McAlister K. W. and McCroskey W. J., “Analysis of the Development of Dynamic Stall Based on Oscillating Airfoil Experiments,” NASA TN-D-8382, 1977. Google Scholar

  • [4] McAlister K. W., Carr L. W. and McCroskey W. J., “Dynamic Stall Experiments on a NACA 0012 Airfoil,” NASA TP-1100, 1978. Google Scholar

  • [5] McCroskey W. J., “The Phenomenon of Dynamic Stall,” NASA TM-81264, 1981. Google Scholar

  • [6] McCroskey W. J., McAlister K. W., Carr L. W., Pucci S. L., Lambert O. and Indergrand R. F., “Dynamic Stall on Advanced Airfoil Sections,” Journal of the American Helicopter Society, Vol. 26, No. 3, 1981, pp. 40–50. doi:https://doi.org/10.4050/JAHS.26.40 JHESAK 0002-8711 CrossrefGoogle Scholar

  • [7] Carr L. W., “Progress in Analysis and Prediction of Dynamic Stall,” Journal of Aircraft, Vol. 25, No. 1, 1988, pp. 6–17. doi:https://doi.org/10.2514/3.45534 LinkGoogle Scholar

  • [8] Ericsson L. E. and Reding J. P., “Fluid Mechanics of Dynamic Stall Part 1. Unsteady Flow Concepts,” Journal of Fluids and Structures, Vol. 2, No. 1, 1988, pp. 1–33. doi:https://doi.org/10.1016/S0889-9746(88)90116-8 0889-9746 CrossrefGoogle Scholar

  • [9] Ericsson L. E. and Reding J. P., “Fluid Mechanics of Dynamic Stall Part 2. Prediction of Full Scale Characteristics,” Journal of Fluids and Structures, Vol. 2, No. 2, 1988, pp. 113–143. doi:https://doi.org/10.1016/S0889-9746(88)80015-X 0889-9746 CrossrefGoogle Scholar

  • [10] Visbal M. R., “Dynamic Stall of a Constant-Rate Pitching Airfoil,” Journal of Aircraft, Vol. 27, No. 5, 1990, pp. 400–407. doi:https://doi.org/10.2514/3.25289 LinkGoogle Scholar

  • [11] Chandrasekhara M. S., Ahmed S. and Carr L. W., “Schlieren Studies of Compressibility Effects on Dynamic Stall of Transiently Pitching Airfoils,” Journal of Aircraft, Vol. 30, No. 2, 1993, pp. 213–220. doi:https://doi.org/10.2514/3.48268 LinkGoogle Scholar

  • [12] Chandrasekhara M. S., Carr L. W. and Wilder M. C., “Interferometric Investigations of Compressible Dynamic Stall over a Transiently Pitching Airfoil,” AIAA Journal, Vol. 32, No. 3, 1994, pp. 586–593. doi:https://doi.org/10.2514/3.12025 AIAJAH 0001-1452 LinkGoogle Scholar

  • [13] Mulleners K. and Raffel M., “The Onset of Dynamic Stall Revisited,” Experiments in Fluids, Vol. 52, No. 2, 2012, pp. 779–793. doi:https://doi.org/10.1007/s00348-011-1118-y EXFLDU 0723-4864 CrossrefGoogle Scholar

  • [14] Raghav V., Richards P., Komerath N. and Smith M. J., “An Exploration of the Physics of Dynamic Stall,” Proceedings of AHS Aeromechanics Specialists Conference, Vertical Flight Soc., Fairfax, VA, 2010. Google Scholar

  • [15] Visbal M., “Numerical Investigation of Deep Dynamic Stall of a Plunging Airfoil,” AIAA Journal, Vol. 49, No. 10, 2011, pp. 2152–2170. doi:https://doi.org/10.2514/1.J050892 AIAJAH 0001-1452 LinkGoogle Scholar

  • [16] Pruski B. J. and Bowersox R. D. W., “Leading-Edge Flow Structure of a Dynamically Pitching NACA 0012 Airfoil,” AIAA Journal, Vol. 51, No. 5, 2013, pp. 1042–1053. doi:https://doi.org/10.2514/1.J051673 AIAJAH 0001-1452 LinkGoogle Scholar

  • [17] Mulleners K. and Raffel M., “Dynamic Stall Development,” Experiments in Fluids, Vol. 53, No. 2, 2013, pp. 1–9. doi:https://doi.org/10.1007/s00348-013-1469-7 EXFLDU 0723-4864 Google Scholar

  • [18] Hodara J., Lind A. H., Jones A. R. and Smith M. J., “Collaborative Investigation of the Aerodynamic Behavior of Airfoils in Reverse Flow,” Journal of the American Helicopter Society, Vol. 61, No. 3, 2016, pp. 1–15. doi:https://doi.org/10.4050/JAHS.61.032001 JHESAK 0002-8711 CrossrefGoogle Scholar

  • [19] Sharma A. and Visbal M., “Airfoil Thickness Effects on Dynamic Stall Onset,” 23rd AIAA Computational Fluid Dynamics Conference, AIAA Paper 2017-3957, 2017. doi:https://doi.org/10.2514/6.2017-3957 LinkGoogle Scholar

  • [20] Gupta R. and Ansell P. J., “Unsteady Flow Physics of Airfoil Dynamic Stall,” AIAA Journal, Vol. 57, No. 1, 2019, pp. 165–175. doi:https://doi.org/10.2514/1.J057257 AIAJAH 0001-1452 LinkGoogle Scholar

  • [21] Visbal M. R. and Garmann D. J., “Analysis of Dynamic Stall on a Pitching Airfoil Using High-Fidelity Large-Eddy Simulations,” AIAA Journal, Vol. 56, No. 1, 2018, pp. 46–63. doi:https://doi.org/10.2514/1.J056108 AIAJAH 0001-1452 LinkGoogle Scholar

  • [22] Deparday J. and Mulleners K., “Critical Evolution of Leading Edge Suction During Dynamic Stall,” Journal of Physics: Conference Series, Vol. 1037, No. 2, 2018, pp. 1–8. Google Scholar

  • [23] Gupta R. and Ansell P. J., “Investigation of the Effects of Reynolds Number on the Unsteady Flow Physics of Airfoil Dynamic Stall,” 2018 AIAA Aerospace Sciences Meeting, AIAA Paper 2018-0354, 2018. doi:https://doi.org/10.2514/6.2018-0354 LinkGoogle Scholar

  • [24] Benton S. I. and Visbal M. R., “Understanding Abrupt Leading Edge Separation as a Mechanism for the Onset of Dynamic Stall,” 2018 AIAA Aerospace Sciences Meeting, AIAA Paper 2018-0356, 2018. doi:https://doi.org/10.2514/6.2018-0356 LinkGoogle Scholar

  • [25] Moulton M. A., Wong T.-C., Smith M. J., Le Pape A. and Le Balleur J.-C., “The Role of Transition Modeling in CFD Predictions of Static and Dynamic Stall,” 37th European Rotorcraft Forum, No. ERF2011-215, Augusta Westland, Cascina Costa di Samarate, Italy, Sept. 2011, pp. 1097–1108. Google Scholar

  • [26] Fung K. Y. and Carr L. W., “Effects of Compressibility on Dynamic Stall,” AIAA Journal, Vol. 29, No. 2, 1991, pp. 306–308. doi:https://doi.org/10.2514/3.10578 AIAJAH 0001-1452 LinkGoogle Scholar

  • [27] Juliano T. J., Peng D., Jensen C., Gregory J. W., Liu T., Montefort J., Palluconi S., Crafton J. and Fonov S., “PSP Measurements on an Oscillating NACA 0012 Airfoil in Compressible Flow,” 41st AIAA Fluid Dynamics Conference and Exhibit, AIAA Paper 2011-3728, June 2011. doi:https://doi.org/10.2514/6.2011-3728 LinkGoogle Scholar

  • [28] Bowles P. O., “Wind Tunnel Experiments on the Effect of Compressibility on the Attributes of Dynamic Stall,” Ph.D. Thesis, Univ. of Notre Dame, Notre Dame, IN, 2012. Google Scholar

  • [29] Corke T. C. and Thomas F. O., “Dynamic Stall in Pitching Airfoils: Aerodynamic Damping and Compressibility Effects,” Annual Review of Fluid Mechanics, Vol. 47, 2015, pp. 479–505. doi:https://doi.org/10.1146/annurev-fluid-010814-013632 ARVFA3 0066-4189 CrossrefGoogle Scholar

  • [30] Post M. L. and Corke T. C., “Separation Control Using Plasma Actuators: Dynamic Stall Vortex Control on Oscillating Airfoil,” AIAA Journal, Vol. 44, No. 12, 2006, pp. 3125–3135. doi:https://doi.org/10.2514/1.22716 AIAJAH 0001-1452 LinkGoogle Scholar

  • [31] Heine B., Mulleners K., Joubert G. and Raffel M., “Dynamic Stall Control by Passive Disturbance Generators,” AIAA Journal, Vol. 51, No. 9, 2013, pp. 2086–2097. doi:https://doi.org/10.2514/1.J051525 AIAJAH 0001-1452 LinkGoogle Scholar

  • [32] Lombardi A. J., Bowles P. O. and Corke T. C., “Closed-Loop Dynamic Stall Control Using a Plasma Actuator,” AIAA Journal, Vol. 51, No. 5, 2013, pp. 1130–1141. doi:https://doi.org/10.2514/1.J051988 AIAJAH 0001-1452 LinkGoogle Scholar

  • [33] Visbal M. R. and Benton S. I., “Exploration of High-Frequency Control of Dynamic Stall Using Large-Eddy Simulations,” AIAA Journal, Vol. 56, No. 8, 2018, pp. 2974–2991. doi:https://doi.org/10.2514/1.J056720 AIAJAH 0001-1452 LinkGoogle Scholar

  • [34] Benton S. I. and Visbal M. R., “High-Frequency Forcing to Delay Dynamic Stall at Relevant Reynolds Number,” 47th AIAA Fluid Dynamics Conference, AIAA Paper 2017-4119, 2017. doi:https://doi.org/10.2514/6.2017-4119 LinkGoogle Scholar

  • [35] Visbal M. R. and Garmann D. J., “Control of Dynamic Stall over a Pitching Finite-Aspect-Ratio Wing,” 47th AIAA Fluid Dynamics Conference, AIAA Paper 2017-4118, 2017. doi:https://doi.org/10.2514/6.2017-4118 LinkGoogle Scholar

  • [36] Brunton S. L., Rowley C. W. and Williams D. R., “Reduced-Order Unsteady Aerodynamic Models at Low Reynolds Number,” Journal of Fluid Mechanics, Vol. 724, June 2013, pp. 203–233. doi:https://doi.org/10.1017/jfm.2013.163 JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [37] Mohan A. T., Gaitonde D. V. and Visbal M. R., “Model Reduction and Analysis of Deep Dynamic Stall on a Plunging Airfoil,” Computers and Fluids, Vol. 129, April 2016, pp. 1–19. doi:https://doi.org/10.1016/j.compfluid.2016.01.017 CPFLBI 0045-7930 CrossrefGoogle Scholar

  • [38] Mohan A. T. and Gaitonde D. V., “Analysis of Airfoil Stall Control Using Dynamic Mode Decomposition,” Journal of Aircraft, Vol. 54, No. 4, 2017, pp. 1508–1520. doi:https://doi.org/10.2514/1.C034044 LinkGoogle Scholar

  • [39] Dunne R. and McKeon B. J., “Dynamic Stall on a Pitching and Surging Airfoil,” Experiments in Fluids, Vol. 56, No. 8, 2015, p. 157. doi:https://doi.org/10.2514/1.J054784 EXFLDU 0723-4864 CrossrefGoogle Scholar

  • [40] Dunne R., Schmid P. J. and McKeon B. J., “Analysis of Flow Timescales on a Periodically Pitching/Surging Airfoil,” AIAA Journal, Vol. 54, No. 11, 2016, pp. 3421–3433. doi:https://doi.org/10.1007/s00348-015-2028-1 AIAJAH 0001-1452 LinkGoogle Scholar

  • [41] Coleman D. G., Thomas F. O., Gordeyev S. and Corke T. C., “Parametric Modal Decomposition of Dynamic Stall,” AIAA Journal, Vol. 57, No. 1, 2019, pp. 176–190. doi:https://doi.org/10.2514/1.J057077 AIAJAH 0001-1452 LinkGoogle Scholar

  • [42] Melius M. S., Cal R. B. and Mulleners K., “Dynamic Stall of an Experimental Wind Turbine Blade,” Physics of Fluids, Vol. 28, No. 3, 2016, Paper 034103. doi:https://doi.org/10.1063/1.4942001 CrossrefGoogle Scholar

  • [43] Huang N. E., Shen Z., Long S. R., Wu M. C., Shih H. H., Zheng Q., Yen N., Tung C. C. and Liu H. H., “The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis,” Proceedings of the Royal Society A, Vol. 454, No. 1971, 1998, pp. 903–995. doi:https://doi.org/10.1098/rspa.1998.0193 CrossrefGoogle Scholar

  • [44] Wu Z. and Huang N. E., “A Study of the Characteristics of White Noise Using the Empirical Mode Decomposition Method,” Proceedings of the Royal Society A, Vol. 460, No. 2046, 2004, pp. 1597–1611. doi:https://doi.org/10.1098/rspa.2003.1221 CrossrefGoogle Scholar

  • [45] Huang N. E. and Shen S. S., Hilbert–Huang Transform and Its Applications, World Scientific, Singapore, 2005. doi:https://doi.org/10.1142/5862 CrossrefGoogle Scholar

  • [46] Huang N. E. and Attoh-Okine N. O., The Hilbert–Huang Transform in Engineering, CRC Press, Boca Raton, FL, 2005. CrossrefGoogle Scholar

  • [47] Deering R. and Kaiser J., “The Use of a Masking Signal to Improve Empirical Mode Decomposition,” Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 4, IEEE Publ., Piscataway, NJ, 2005, pp. 485–488. doi:https://doi.org/10.1109/ICASSP.2005.1416051 Google Scholar

  • [48] Senroy N., Suryanarayanan S. and Ribeiro P., “An Improved Hilbert–Huang Method for Analysis of Time-Varying Waveforms in Power Quality,” IEEE Transactions on Power Systems, Vol. 22, No. 4, 2007, pp. 1843–1850. doi:https://doi.org/10.1109/TPWRS.2007.907542 CrossrefGoogle Scholar

  • [49] Wu Z. and Huang N. E., “Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method,” Advances in Adaptive Data Analysis, Vol. 1, No. 1, 2009, pp. 1–41. doi:https://doi.org/10.1142/S1793536909000047 CrossrefGoogle Scholar

  • [50] Lee Y., Tsakirtzis S., Vakakis A. F., Bergman L. and McFarland D., “Physics-Based Foundation for Empirical Mode Decomposition,” AIAA Journal, Vol. 47, No. 12, 2009, pp. 2938–2963. doi:https://doi.org/10.2514/1.43207 AIAJAH 0001-1452 LinkGoogle Scholar

  • [51] Zhang J., Yan R., Gao R. and Feng Z., “Performance Enhancement of Ensemble Empirical Mode Decomposition,” Mechanical Systems and Signal Processing, Vol. 24, No. 7, 2010, pp. 2104–2123. doi:https://doi.org/10.1016/j.ymssp.2010.03.003 CrossrefGoogle Scholar

  • [52] Yeh J., Shieh J. and Huang N., “Complimentary Ensemble Empirical Mode Decomposition: A Novel Noise Enhanced Data Analysis Method,” Advances in Adaptive Data Analysis, Vol. 2, No. 2, 2010, pp. 135–156. doi:https://doi.org/10.1142/S1793536910000422 CrossrefGoogle Scholar

  • [53] Torres M., Colominas M., Schlotthauer G. and Flandrin P., “A Complete Ensemble Empirical Mode Decomposition with Adaptive Noise,” 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE Publ., Piscataway, NJ, 2011, pp. 4144–4147. doi:https://doi.org/10.1109/ICASSP.2011.5947265 Google Scholar

  • [54] Rilling G., Flandrin P., Gonalves P. and Lilly J., “Bivariate Empirical Mode Decomposition,” IEEE Signal Processing Letters, Vol. 14, No. 12, 2007, pp. 936–939. doi:https://doi.org/10.1109/LSP.2007.904710 CrossrefGoogle Scholar

  • [55] Rehman N. and Mandic D., “Multivariate Empirical Mode Decomposition,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 466, No. 2117, 2010, pp. 1291–1302. doi:https://doi.org/10.1098/rspa.2009.0502 CrossrefGoogle Scholar

  • [56] Mandic D., Rehman N., Wu Z. and Huang N., “Empirical Mode Decomposition-Based Time-Frequency Analysis of Multivariate Signals,” IEEE Signal Processing Magazine, Vol. 30, No. 6, 2013, pp. 74–86. doi:https://doi.org/10.1109/MSP.2013.2267931 ISPRE6 1053-5888 CrossrefGoogle Scholar

  • [57] Ahrabian A., Rehman N. and Mandic D., “Bivariate Empirical Mode Decomposition for Unbalanced Real-World Signals,” Signal Processing Letters, Vol. 20, No. 3, 2013, pp. 245–248. doi:https://doi.org/10.1109/LSP.2013.2242062 CrossrefGoogle Scholar

  • [58] Rehman N., Park C., Huang N. E. and Mandic D. P., “EMD via MEMD: Multivariate Noise-Aided Computation of Standard EMD,” Advances in Adaptive Data Analysis, Vol. 5, No. 2, 2013, pp. 1–25. doi:https://doi.org/10.1142/S1793536913500076 CrossrefGoogle Scholar

  • [59] Rehman N., Park C., Huang N. E. and Mandic D. P., “Dynamically-Sampled Bivariate Empirical Mode Decomposition,” IEEE Signal Processing Letters, Vol. 21, No. 7, 2014, pp. 857–861. doi:https://doi.org/10.1109/LSP.2014.2317773 CrossrefGoogle Scholar

  • [60] Looney D., Hemakom A. and Mandic D. P., “Intrinsic Multi-Scale Analysis: A Multi-Variate Empirical Mode Decomposition,” Philosophical Transactions of the Royal Society A, Vol. 471, No. 2173, 2015, pp. 1–28. doi:https://doi.org/10.1098/rspa.2014.0709 Google Scholar

  • [61] Hemakom V., Goverdovsky V., Looney D. and Mandic D. P., “Adaptive-Projection Intrinsically Transformed Multivariate Empirical Mode Decomposition in Cooperative Brain-Computer Interface,” Philosophical Transactions of the Royal Society A, Vol. 374, No. 2065, 2016, pp. 1–15. doi:https://doi.org/10.1098/rsta.2015.0199 Google Scholar

  • [62] Bhuiyan S. M. A., Adhami R. R. and Khan J. F., “Fast and Adaptive Bidimensional Empirical Mode Decomposition Using Order-Statistics Filter Based Envelope Estimation,” EURASIP Journal on Advances in Signal Processing, Vol. 2008, No. 1, 2008, pp. 1–18. doi:https://doi.org/10.1155/2008/728356 CrossrefGoogle Scholar

  • [63] Wu Z., Huang N. and Chen X., “The Multi-Dimensional Ensemble Empirical Mode Decomposition Method,” Advances in Adaptive Data Analysis, Vol. 1, No. 3, 2009, pp. 339–372. doi:https://doi.org/10.1142/S1793536909000187 CrossrefGoogle Scholar

  • [64] Chen C., Guo S., Chang W., Tsai J. S. and Cheng K., “An Improved Bidimensional Empirical Mode Decomposition: A Mean Approach for Fast Decomposition,” Signal Processing, Vol. 98, May 2014, pp. 344–358. doi:https://doi.org/10.1016/j.sigpro.2013.11.034 SPRODR 0165-1684 CrossrefGoogle Scholar

  • [65] Riffi J., Mahraz A. M., Abbad A. and Tairi H., “3D Extension of the Fast and Adaptive Bidimensional Empirical Mode Decomposition,” Multidimensional Systems and Signal Processing, Vol. 26, No. 3, 2015, pp. 823–834. doi:https://doi.org/10.1007/s11045-014-0283-6 MUSPE5 0923-6082 CrossrefGoogle Scholar

  • [66] He Z., Li J., Liu L. and Shen Y., “Three-Dimensional Empirical Mode Decomposition (TEMD): A Fast Approach Motivated by Separable Filters,” Signal Processing, Vol. 131, Feb. 2017, pp. 307–319. doi:https://doi.org/10.1016/j.sigpro.2016.08.024 SPRODR 0165-1684 CrossrefGoogle Scholar

  • [67] Thirumalaisamy M. R. and Ansell P. J., “Fast and Adaptive Empirical Mode Decomposition for Multidimensional, Multivariate Signals,” IEEE Signal Processing Letters, Vol. 25, No. 10, 2018, pp. 1550–1554. doi:https://doi.org/10.1109/LSP.2018.2867335 CrossrefGoogle Scholar

  • [68] Gupta R. and Ansell P. J., “Closed-Loop Trailing-Edge Separation Control System Using Empirical Mode Decomposition,” AIAA Journal, Vol. 56, No. 1, 2018, pp. 121–131. doi:https://doi.org/10.2514/1.J056157 AIAJAH 0001-1452 LinkGoogle Scholar

  • [69] Dahl M., “Turbulent Statistics from Time-Resolved PIV Measurements of a Jet Using Empirical Mode Decomposition,” 18th AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2012-2297, June 2012. doi:https://doi.org/10.2514/6.2012-2297 LinkGoogle Scholar

  • [70] Unnikrishnan S., Agostini L. and Gaitonde D. V., “Analysis of Intermittency of Supersonic Jet Noise with Synchronized LES,” 21st AIAA/CEAS Aeroacoustics Conference, AIAA Paper 2015-2532, 2015. doi:https://doi.org/10.2514/6.2015-2532 Google Scholar

  • [71] Mohan A. T., Agostini L., Gaitonde D. V. and Garmann D. J., “Statistical Analysis and Model Reduction of Surface Pressure in the Interaction of a Streamwise-Oriented Vortex with a Wing,” 22nd AIAA Computational Fluid Dynamics Conference, AIAA Paper 2015-3412, 2015. doi:https://doi.org/10.2514/6.2015-3412 LinkGoogle Scholar

  • [72] Koll M. D., Favale J. V., Kirchner B. M., Elliott G. S. and Dutton J. C., “Flow Structure Identification in the Near Wake of an Axisymmetric Supersonic Base Flow Using MEEMD,” 47th AIAA Fluid Dynamics Conference, AIAA Paper 2017-3972, 2017. doi:https://doi.org/10.2514/6.2017-3972 LinkGoogle Scholar

  • [73] Ansell P. J. and Balajewicz M. J., “Separation of Unsteady Scales in a Mixing Layer Using Empirical Mode Decomposition,” AIAA Journal, Vol. 55, No. 2, 2017, pp. 419–434. doi:https://doi.org/10.2514/1.J055120 AIAJAH 0001-1452 LinkGoogle Scholar

  • [74] Beddoes T. S., “Onset of Leading Edge Separation Effects Under Dynamic Conditions and Low Mach Number,” 34th Annual National Forum of the American Helicopter Society, Vol. 15, No. 17, Vertical Flight Soc., Fairfax, VA, 1978. Google Scholar

  • [75] Leishman J. and Beddoes T., “A Semi-Empirical Model for Dynamic Stall,” Journal of the American Helicopter Society, Vol. 34, No. 3, 1989, pp. 3–17. doi:https://doi.org/10.4050/JAHS.34.3 JHESAK 0002-8711 CrossrefGoogle Scholar

  • [76] Ramesh K., Gopalarathnam A., Granlund K., Ol M. V. and Edwards J. R., “Discrete-Vortex Method with Novel Shedding Criterion for Unsteady Aerofoil Flows with Intermittent Leading-Edge Vortex Shedding,” Journal of Fluid Mechanics, Vol. 751, July 2014, pp. 500–538. doi:https://doi.org/10.1017/jfm.2014.297 JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [77] Ramesh K., Murua J. and Gopalarathnam A., “Limit-Cycle Oscillations in Unsteady Flows Dominated by Intermittent Leading-Edge Vortex Shedding,” Journal of Fluids and Structures, Vol. 55, May 2015, pp. 84–105. doi:https://doi.org/10.1016/j.jfluidstructs.2015.02.005 0889-9746 CrossrefGoogle Scholar

  • [78] Darakananda D., Eldredge J. D., Colonius T. and Williams D. R., “A Vortex Sheet/Point Vortex Dynamical Model for Unsteady Separated Flows,” 54th AIAA Aerospace Sciences Meeting, AIAA Paper 2016-2072, 2016. doi:https://doi.org/10.2514/6.2016-2072 LinkGoogle Scholar

  • [79] Ramesh K., Granlund K., Ol M. V., Gopalarathnam A. and Edwards J. R., “Leading-Edge Flow Criticality as a Governing Factor in Leading-Edge Vortex Initiation in Unsteady Airfoil Flows,” Theoretical and Computational Fluid Dynamics, Vol. 32, No. 2, 2018, pp. 109–136. doi:https://doi.org/10.1007/s00162-017-0442-0 TCFDEP 0935-4964 CrossrefGoogle Scholar

  • [80] Deparday J. and Mulleners K., “Interplay Between Dynamic Stall Development and Leading Edge Suction,” Journal of Fluid Mechanics (submitted for publication). JFLSA7 0022-1120 Google Scholar

  • [81] Haller G. and Yuan G., “Lagrangian Coherent Structures and Mixing in Two-Dimensional Turbulence,” Physica D: Nonlinear Phenomena, Vol. 147, Nos. 3–4, 2000, pp. 352–370. doi:https://doi.org/10.1016/S0167-2789(00)00142-1 CrossrefGoogle Scholar

  • [82] Allshouse M. R. and Peacock T., “Lagrangian Based Methods for Coherent Structure Detection,” Chaos: An Interdisciplinary Journal of Nonlinear Science, Vol. 25, No. 9, 2015, Paper 097617. doi:https://doi.org/10.1063/1.4922968 CrossrefGoogle Scholar

  • [83] Green M., Rowley C. and Haller G., “Detection of Lagrangian Coherent Structures in Three-Dimensional Turbulence,” Journal of Fluid Mechanics, Vol. 572, Feb. 2007, pp. 111–120. doi:https://doi.org/10.1017/S0022112006003648 JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [84] Sapsis T., Ouellette N., Gollub J. and Haller G., “Neutrally Buoyant Particle Dynamics in Fluid Flows: Comparison of Experiments with Lagrangian Stochastic Models,” Physics of Fluids, Vol. 23, No. 9, 2011, pp. 1–15. doi:https://doi.org/10.1063/1.3632100 CrossrefGoogle Scholar

  • [85] Haller G., “Lagrangian Coherent Structures,” Annual Review of Fluid Mechanics, Vol. 47, 2015, pp. 137–162. doi:https://doi.org/10.1146/annurev-fluid-010313-141322 ARVFA3 0066-4189 CrossrefGoogle Scholar

  • [86] Hunt J., Wray A. and Moin P., “Eddies, Stream, and Convergence Zones in Turbulent Flows,” Stanford Univ., Center for Turbulence Research Rept.  CTR-S88, 1988. Google Scholar

  • [87] Spentzos A., Barakos G., Badcock K., Richards B., Wernert P., Schreck S. and Raffel M., “Investigation of Three-Dimensional Dynamic Stall Using Computational Fluid Dynamics,” AIAA Journal, Vol. 43, No. 5, 2005, pp. 1023–1033. doi:https://doi.org/10.2514/1.8830 AIAJAH 0001-1452 LinkGoogle Scholar

  • [88] Melius M. S., Mulleners K. and Cal R. B., “The Role of Surface Vorticity During Unsteady Separation,” Physics of Fluids, Vol. 30, No. 4, 2018, Paper 045108. doi:https://doi.org/10.1063/1.5006527 CrossrefGoogle Scholar

  • [89] Hussain A. K. M. F. and Zaman K. B. M. Q., “An Experimental Study of Organized Motions in the Turbulent Plane Mixing Layer,” Journal of Fluid Mechanics, Vol. 159, 1985, pp. 85–104. doi:https://doi.org/10.1017/S0022112085003111 JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [90] Mulleners K., Mancini P. M. and Jones A. R., “Flow Development on a Flat-Plate Wing Subjected to a Streamwise Acceleration,” AIAA Journal, Vol. 55, No. 6, 2017, pp. 1–5. doi:https://doi.org/10.2514/1.J055497 AIAJAH 0001-1452 LinkGoogle Scholar

  • [91] Rival D. E., Kriegseis J., Schaub P., Widmann A. and Tropea C., “Characteristic Length Scales for Vortex Detachment on Plunging Profiles with Varying Leading-Edge Geometry,” Experiments in Fluids, Vol. 55, No. 1, 2014, p. 1660. doi:https://doi.org/10.1007/s00348-013-1660-x EXFLDU 0723-4864 CrossrefGoogle Scholar