Skip to main content
Skip to article control options
No Access

Theoretical and Experimental Analysis of Flight-to-Ground Scaling for Axisymmetric and Planar Bodies

Published Online:https://doi.org/10.2514/1.J062055

This paper proposes a methodology to scale the stagnation point plasma conditions of an axially symmetric body to a two-dimensional planar body. The method is required to correlate material samples tested under thermochemical loads combined with aeromechanical loads in order to relate the measurements to actual flight scenarios. The equations governing the boundary-layer and heat transfer equations are introduced and analyzed using the commonly known local heat transfer simulation concept. This technique is then adapted to the given constraints and results in a two-step flight-to-ground scaling approach. Flight conditions are first transformed to axisymmetric ground testing equivalents before being scaled to planar bodies. Thereby, the mass-specific enthalpy, total pressure, and Stanton number stay constant; and the velocity gradient doubles when scaling from axisymmetric to planar. Formulations for the velocity gradient are analyzed for both the sub- and supersonic cases. The results are compared between a theoretical approach and plasma wind-tunnel tests. Three heat flux gauges were tested at two conditions. The planar sensors were evaluated with two independent methods, and the results were scaled to a comparable condition. The results compare very well with the theoretically calculated values. The axisymmetric to planar conversion theory detailed in this paper is therefore considered experimentally verified.

References

  • [1] Anderson J. D., Hypersonic and High-Temperature Gas Dynamics, 2nd ed., AIAA Education Series, AIAA, Reston, VA, 2006, pp. 261–315, Chap. 6. https://doi.org/10.2514/4.861956 LinkGoogle Scholar

  • [2] Truitt R. W., Fundamentals of Aerodynamic Heating, Ronald, New York, 1960, pp. 162–179. Google Scholar

  • [3] Sakraker I., Turchi A. and Chazot O., “Hypersonic Aerothermochemistry Duplication in Ground Plasma Facilities: A Flight-to-Ground Approach,” Journal of Spacecraft and Rockets, Vol. 52, No. 5, 2015, pp. 1273–1282. https://doi.org/10.2514/1.A33137 LinkGoogle Scholar

  • [4] Fritsche B., Lips T. and Koppenwallner G., “Analytical and Numerical Re-Entry Analysis of Simple-Shaped Objects,” Acta Astronautica, Vol. 60, No. 8, 2007, pp. 737–751. https://doi.org/10.1016/j.actaastro.2006.07.017 CrossrefGoogle Scholar

  • [5] Kärräng P., Fritsche B., Zander F., Loehle S., Lips T. and Krag H., “International Space Station Aerothermal Break-Up Analysis Using SCARAB,” 9th IAASS Conference, International Assoc. for the Advancement of Space Safety, Noordwijk, The Netherlands, 2017. Google Scholar

  • [6] Kärräng P., “Demisability Analysis of Solar Array Drive Mechanism,” 4th International Workshop on Space Debris Re-Entry, ESA ESOC, Darmstadt, Germany, 2018. Google Scholar

  • [7] Leiser D., Löhle S., Zander F., Buttsworth D. R., Choudhury R. and Fasoulas S., “Analysis of Reentry and Break-Up Forces from Impulse Facility Experiments and Numerical Rebuilding,” Journal of Spacecrafts and Rockets, Vol. 59, No. 4, 2022, pp. 1276–1288. https://doi.org/10.2514/1.A35204 LinkGoogle Scholar

  • [8] Leiser D., Löhle S. and Fasoulas S., “Spectral Features for Reentry Breakup Event Identification,” Journal of Spacecrafts and Rockets, May 2022. https://doi.org/10.2514/1.A35258 Google Scholar

  • [9] Leiser D., Loehle S., Zander F., Choudhury R., Buttsworth D. and Fasoulas S., “Spacecraft Material Tests under Aerothermal and Mechanical Reentry Loads,” AIAA SciTech 2019 Forum, AIAA Paper 2019-0161, 2019. https://doi.org/10.2514/6.2019-0161 Google Scholar

  • [10] Marren D. and Lu F. (eds.), Advanced Hypersonic Test Facilities, Progress in Astronautics and Aeronautics, AIAA, Reston, VA, 2002, pp. 279–314. https://doi.org/10.2514/4.866678 Google Scholar

  • [11] Loehle S., Zander F., Eberhart M., Hermann T., Meindl A., Massuti-Ballester B., Leiser D., Hufgard F., Pagan A., Herdrich G. and Fasoulas S., “Assessment of High Enthalpy Flow Conditions for Re-Entry Aerothermodynamics in the Plasma Wind Tunnel Facilities at IRS,” CEAS Space Journal, Vol. 14, No. 2, 2021, pp. 395–406. https://doi.org/10.1007/s12567-021-00396-y Google Scholar

  • [12] Kolesnikov A. F., “Conditions of Simulation of Stagnation Point Heat Transfer from a High-Enthalpy Flow,” Fluid Dynamics, Vol. 28, No. 1, 1993, pp. 131–137. https://doi.org/10.1007/BF01055676 CrossrefGoogle Scholar

  • [13] Olivier H., “Influence of the Velocity Gradient on the Stagnation Point Heating in Hypersonic Flow,” Shock Waves, Vol. 5, No. 4, 1995, pp. 205–216. https://doi.org/10.1007/BF01419002 CrossrefGoogle Scholar

  • [14] Brown R. D., “A Comparison of the Theoretical and Experimental Stagnation-Point Heat Transfer in an Arc-Heated Subsonic Stream,” NASA Langley Research Center TN D-1927, Hampton, VA, 1964. Google Scholar

  • [15] Kaplan C., “The Flow of a Compressible Fluid Past a Sphere,” NACA TN-762, Jan. 1940. Google Scholar

  • [16] Standard Test Method for Calculation of Stagnation Enthalpy from Heat Transfer Theory and Experimental Measurements of Stagnation-Point Heat Transfer and Pressure,” ASTM International STD E637-05, 2005. https://doi.org/10.1520/E0637-05R16 Google Scholar

  • [17] Kolesnikov A. F., “Extrapolation from High Enthalpy Tests to Flight Based on the Concept of Local Heat Transfer Simulation,” Measurement Techniques for High Enthalpy and Plasma Flows, VKI, RTO—Research and Technology Organization, Rept.  ADP010749, Rhode-Saint-Genese, Belgium, 1999. Google Scholar

  • [18] Kolesnikov A. F., “The Concept of Local Simulation for Stagnation Point Heat Transfer in Hypersonic Flows: Applications and Validation,” 21st AIAA Aerodynamic Measurement and Ground Testing Conference, AIAA Paper 2000-2515, 2000. Google Scholar

  • [19] Lees L. and Kubota T., “Inviscid Hypersonic Flow over Blunt-Nosed Slender Bodies,” Journal of the Aeronautical Sciences, Vol. 24, No. 3, 1957, pp. 195–202. https://doi.org/10.2514/8.3803 LinkGoogle Scholar

  • [20] Hermann T., “Emissionsspektroskopische Analyse Einer Hyperbolischen Wiedereintrittsströmung im Plasmawindkanal,” Ph.D. Thesis, Univ. Stuttgart, Stuttgart, Germany, 2017. https://doi.org/10.18419/opus-9584 Google Scholar

  • [21] Fay J. A. and Riddell F. R., “Theory of Stagnation Point Heat Transfer in Dissociated Air,” AIAA Journal, Vol. 25, No. 2, 1958, pp. 373–386. https://doi.org/10.2514/8.7517 Google Scholar

  • [22] Stöckle T., Auweter-Kurtz M. and Fasoulas S., “Heterogeneous Catalytic Recombination Reactions Including Energy Accommodation Considerations in High Enthalpy Gas Flows,” 32nd Thermophysics Conference, AIAA Paper 1997-2591, 1997. https://doi.org/10.2514/6.1997-2591 Google Scholar

  • [23] Anderson L. A., “Effect of Surface Catalytic Activity on Stagnation Heat-Transfer Rates,” AIAA Journal, Vol. 11, No. 5, 1973, pp. 649–656. https://doi.org/10.2514/3.6806 LinkGoogle Scholar

  • [24] Marvin J. G. and Deiwert G. S., “Convective Heat Transfer in Planetary Gases,” NASA Ames Research Center TR-R 224, Moffett Field, CA, July 1965. Google Scholar

  • [25] Lees L., “Laminar Heat Transfer over Blunt-Nosed Bodies at Hypersonic Flight Speeds,” Journal of Jet Propulsion, Vol. 26, No. 4, 1956, pp. 259–269. https://doi.org/10.2514/8.6977 LinkGoogle Scholar

  • [26] Goulard R., “The Coupling of Radiation and Convection in Detached Shock Layers,” Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 1, Nos. 3–4, 1961, pp. 249–257. https://doi.org/10.1016/0022-4073(61)90025-5 CrossrefGoogle Scholar

  • [27] Hermann T., Loehle S., Fasoulas S. and Andrianatos A., “Tomographic Optical Emission Spectroscopy for Plasma Wind Tunnel Testing,” Applied Optics, Vol. 55, No. 36, 2016, pp. 10290–10298. https://doi.org/10.1364/AO.55.010290 CrossrefGoogle Scholar

  • [28] Kuneš J., “Thermomechanics,” Dimensionless Physical Quantities in Science and Engineering, Elsevier, London, 2012, pp. 173–283. https://doi.org/10.1016/B978-0-12-416013-2.00005-1 Google Scholar

  • [29] Oppenheim A. K., “Generalized Theory of Convective Heat Transfer in a Free-Molecule Flow,” Journal of the Aeronautical Sciences, Vol. 20, No. 1, 1953, pp. 49–58. https://doi.org/10.2514/8.2523 LinkGoogle Scholar

  • [30] White F. M., Viscous Fluid Flow, 3rd ed., McGraw–Hill Series in Mechanical Engineering, McGraw–Hill Higher Education, New York, 2006, pp. 521–525. Google Scholar

  • [31] Schlichting H. and Gersten K., Boundary-Layer Theory, Springer-Verlag, Berlin, 2018, p. 93. Google Scholar

  • [32] Janzen O., “Beitrag zu einer Theorie der stationären Strömung kompressibler Flüssigkeiten,” Physikalische Zeitschrift, Vol. 14, 1913, pp. 639–943. Google Scholar

  • [33] Rayleigh R., “On the Flow of Compressible Fluid Past an Obstacle,” Journal of Science, Vol. 32, No. 187, 2016, pp. 1–6. https://doi.org/10.1080/14786441608635539 Google Scholar

  • [34] White F. M., Fluid Mechanics, 8th ed., McGraw–Hill Education, New York, 2016, pp. 537–540. Google Scholar

  • [35] Boison J. C., “An Experimental Investigation of Blunt Body Stagnation Point Velocity Gradient,” ARS Journal, Vol. 29, No. 2, 1958, pp. 130–135. https://doi.org/10.2514/8.4699 Google Scholar

  • [36] Zoby E. V. and Sullivan E. M., “Effects Corner Radius on Stagnation Point Velocity Gradients on Blunt Axisymmetric Bodies,” NASA Langley Research Center TM X-1067, Hampton, VA, 1966. Google Scholar

  • [37] Kaplan C., “Two-Dimensional Subsonic Compressible Flow Past Elliptic Cylinders,” NACA Langley Aeronautical Lab. NACA-TR-624, Langley Field, VA, Jan. 1938. Google Scholar

  • [38] Poggi L., “Campo di velocità in una corrente piana di fluido compressibile,” L’Aerotecnica, Vol. 12, No. 12, 1932, pp. 1579–1593. Google Scholar

  • [39] Poggi L., “Campo di velocità in una corrente piana di fluido compressibile. Parte II: Caso dei profili ottenuti con rappresentazione conforme dal cerchio ed in particolare dei profili Joukowski,” L’Aerotecnica, Vol. 14, No. 5, 1934, pp. 532–549. Google Scholar

  • [40] Korobkin I. and Gruenewald K. H., “Investigation of Local Laminar Heat Transfer on a Hemisphere for Supersonic Mach Numbers at Low Rates of Heat Flux,” Journal of the Aeronautical Sciences, Vol. 24, No. 3, 1957, pp. 188–194. https://doi.org/10.2514/8.3801 LinkGoogle Scholar

  • [41] Lees L., “Hypersonic Flow,” 5th International Aeronautical Conference, Inst. of Aeronautical Sciences, New York, 1955, pp. 241–276. Google Scholar

  • [42] Ambrosio A. and Wortman A., “Stagnation-Point Shock-Detachment Distance for Flow Around Spheres and Cylinders in Air,” Journal of the Aerospace Sciences, Vol. 29, No. 7, 1962, pp. 875–875. https://doi.org/10.2514/8.9622 AbstractGoogle Scholar

  • [43] Leiser D., Loehle S., Hufgard F. and Fasoulas S., “Theoretical and Experimental Analysis of Flight-to-Ground Scaling for Axisymmetric and Planar Bodies,” AIAA SciTech 2020 Forum, AIAA Paper 2020-0982, 2020. https://doi.org/10.2514/6.2020-0982 Google Scholar

  • [44] Loehle S., Steinbeck A. and Fasoulas S., “Local Mass-Specific Enthalpy Measurements with a New Mass Injection Probe,” Journal of Thermophysics and Heat Transfer, Vol. 30, No. 2, 2016, pp. 301–307. https://doi.org/10.2514/1.t4709 LinkGoogle Scholar

  • [45] Moffat R. J., “Describing the Uncertainties in Experimental Results,” Experimental Thermal and Fluid Science, Vol. 1, No. 1, 1988, pp. 3–17. https://doi.org/10.1016/0894-1777(88)90043-X CrossrefGoogle Scholar

  • [46] Loehle S., Battaglia J.-L., Jullien P., van Ootegem B., Couzi J. and Lasserre J.-P., “Improvement of High Heat Flux Measurements Using a Null-Point Calorimeter,” Journal of Spacecrafts and Rockets, Vol. 45, No. 1, 2007, pp. 76–81. https://doi.org/10.2514/1.30092 LinkGoogle Scholar

  • [47] Loehle S. and Battaglia J.-L., “Transient Heat Flux Measurements in High Enthalpy Air Plasma Flows Using a Non-Integer System Identification Approach,” 41st AIAA Thermophysics Conference, AIAA Paper 2009-4239, 2009. https://doi.org/10.2514/6.2009-4239 Google Scholar

  • [48] Loehle S., “Derivation of the Non-Integer System Identification Method for the Adiabatic Boundary Condition Using Laplace Transform,” International Journal of Heat and Mass Transfer, Vol. 115, Dec. 2017, pp. 1144–1149. https://doi.org/10.1016/j.ijheatmasstransfer.2017.08.007 CrossrefGoogle Scholar

  • [49] Standard Test Method for Measuring Heat Transfer Rate Using a Thermal Capacitance (Slug) Calorimeter,” American Soc. for Testing and Materials STD E 457-08, West Conshohocken, PA, 2008. https://doi.org/10.1520/E0457-08R20 Google Scholar

  • [50] Ljung L., System Identification: Theory for the User, Prentice–Hall, Upper Saddle River, NJ, 1987, p. 19. Google Scholar

  • [51] Brooks C., Norem W., Hendrix D., Wright J. and Northcutt W., “The Specific Heat of Copper from 40 to 920C,” Journal of Physics and Chemistry of Solids, Vol. 29, No. 4, 1968, pp. 565–574. https://doi.org/10.1016/0022-3697(68)90023-1 Google Scholar

  • [52] Fasoulas S., Sleziona P. C., Auweter-Kurtz M., Habiger H., Laure S. and Schönemann A., “Characterization of a Nitrogen Flow Within a Plasma Wind Tunnel,” Journal of Thermophysics and Heat Transfer, Vol. 9, No. 3, 1995, pp. 422–431. https://doi.org/10.2514/3.684 LinkGoogle Scholar

  • [53] Zafar F. and Alam M. M., “Flow Structure around and Heat Transfer from Cylinders Modified from Square to Circular,” Physics of Fluids, Vol. 31, No. 8, 2019, Paper 083604. https://doi.org/10.1063/1.5109693 Google Scholar

  • [54] Alam M. M., Abdelhamid T. and Sohankar A., “Effect of Cylinder Corner Radius and Attack Angle on Heat Transfer and Flow Topology,” International Journal of Mechanical Sciences, Vol. 175, June 2020, Paper 105566. https://doi.org/10.1016/j.ijmecsci.2020.105566 Google Scholar

  • [55] Wang C.-C. and Hsu L.-C., “Numerical Investigation of Hypersonic Flow with Repetitive-Pulsed Plasma Actuators,” Journal of Aerospace Engineering, Vol. 232, No. 9, 2018, pp. 1715–1724. https://doi.org/10.1177/0954410017703417 Google Scholar

  • [56] Loehle S., Nawaz A., Herdrich G. and Fasoulas S., “Comparison of Heat Flux Gages for High Enthalpy Flows—NASA Ames and IRS,” 46th Aerodynamic Measurement Technology and Ground Testing Conference, AIAA Paper 2016-4422, 2016. Google Scholar