Skip to main content
Skip to article control options
No AccessFull-Length Papers

Film Cooling Performance of a Fully Cooled Vane at High Subsonic Conditions

Published Online:https://doi.org/10.2514/1.T6123

This work focuses on the experimental study of the heat transfer and film cooling characteristics of a fully cooled vane under high subsonic conditions; the transient heat transfer measurements with thermocouples were employed. The inlet Reynolds numbers of the cascade ranged from 3.0×105 to 9.0×105 and the exit Mach number was 0.8. Two freestream turbulence intensities (1.3% and 14.7%) and three mass flow ratios (5.5%, 8.4%, and 12.5%) were tested. The averaged film cooling effectiveness of the current vane with shaped holes was found to be increased by 15%–43% more than that of the vane only with cylindrical holes, and elevated turbulence intensity reduced the averaged film cooling effectiveness by 3%–26%. The heat transfer augmentation of the current vane was lower than that of the vane only with cylindrical holes. With the mass flow ratio increasing, the heat transfer augmentation gradually increased on the pressure side, whereas it was nearly kept invariable on the suction side. The net heat flux reduction results showed that the vane with shaped holes significantly improved the cooling performance, whereas elevated turbulence intensity significantly deteriorated the cooling performance.

References

  • [1] Bogard D. G. and Thole K. A., “Gas Turbine Film Cooling,” Journal of Propulsion and Power, Vol. 22, No. 2, 2006, pp. 249–270. https://doi.org/10.2514/1.18034 LinkGoogle Scholar

  • [2] Eriksen V. L. and Goldstein R. J., “Heat Transfer and Film Cooling Following Injection Through Inclined Circular Tubes,” Journal of Heat Transfer, Vol. 96, No. 2, 1974, pp. 239–245. https://doi.org/10.1115/1.3450171 CrossrefGoogle Scholar

  • [3] Lutum E. and Johnson B. V., “Influence of the Hole Length-to-Diameter Ratio on Film Cooling with Cylindrical Holes,” Journal of Turbomachinery, Vol. 121, No. 2, 1999, pp. 209–216. https://doi.org/10.1115/1.2841303 CrossrefGoogle Scholar

  • [4] Sinha A. K., Bogard D. G. and Crawford M. E., “Film-Cooling Effectiveness Downstream of a Single Row of Holes with Variable Density Ratio,” Journal of Turbomachinery, Vol. 113, No. 3, 1991, pp. 442–449. https://doi.org/10.1115/1.2927894 CrossrefGoogle Scholar

  • [5] Chen A. F., Li S.-J. and Han J.-C., “Film Cooling for Cylindrical and Fan-Shaped Holes Using Pressure-Sensitive Paint Measurement Technique,” Journal of Thermophysics and Heat Transfer, Vol. 29, No. 4, 2015, pp. 775–784. https://doi.org/10.2514/1.T4518 LinkGoogle Scholar

  • [6] Bunker R. S., “A Review of Shaped Hole Turbine Film-Cooling Technology,” Journal of Heat Transfer, Vol. 127, No. 4, 2005, pp. 441–453. https://doi.org/10.1115/1.1860562 CrossrefGoogle Scholar

  • [7] Ames F. E., “Aspects of Vane Film Cooling With High Turbulence: Part I—Heat Transfer,” Journal of Turbomachinery, Vol. 120, No. 4, 1998, pp. 768–776. https://doi.org/10.1115/1.2841788 Google Scholar

  • [8] Bons J. P., MacArthur C. D. and Rivir R. B., “The Effect of High Free-Stream Turbulence on Film Cooling Effectiveness,” Journal of Turbomachinery, Vol. 118, No. 4, 1996, pp. 814–825. https://doi.org/10.1115/1.2840939 CrossrefGoogle Scholar

  • [9] Burd S. W., Kaszeta R. W. and Simon T. W., “Measurements in Film Cooling Flows: Hole L/D and Turbulence Intensity Effects,” Journal of Turbomachinery, Vol. 120, No. 4, 1998, pp. 791–798. https://doi.org/10.1115/1.2841791 CrossrefGoogle Scholar

  • [10] Saumweber C., Schulz A. and Wittig S., “Free-Stream Turbulence Effects on Film Cooling with Shaped Holes,” Journal of Turbomachinery, Vol. 125, No. 1, 2003, pp. 65–73. https://doi.org/10.1115/1.1515336 CrossrefGoogle Scholar

  • [11] Wright L. M., McClain S. T. and Clemenson M. D., “PIV Investigation of the Effect of Freestream Turbulence Intensity on Film Cooling From Fanshaped Holes,” ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, American Soc. of Mechanical Engineers, Paper GT2011-46127, New York, June 2011, pp. 493–507. https://doi.org/10.1115/GT2011-46127 Google Scholar

  • [12] Schroeder R. P. and Thole K. A., “Effect of High Freestream Turbulence on Flowfields of Shaped Film Cooling Holes,” Journal of Turbomachinery, Vol. 138, No. 9, 2016, Paper 091001. https://doi.org/10.1115/1.4032736 Google Scholar

  • [13] Schroeder R. P. and Thole K. A., “Thermal Field Measurements for a Shaped Hole at Low and High Freestream Turbulence Intensity,” Journal of Turbomachinery, Vol. 139, No. 2, 2017, Paper 021012. https://doi.org/10.1115/1.4034798 Google Scholar

  • [14] Schwarz S. G., Goldstein R. J. and Eckert E. R. G., “The Influence of Curvature on Film Cooling Performance,” Journal of Turbomachinery, Vol. 113, No. 3, 1991, pp. 472–478. https://doi.org/10.1115/1.2927898 CrossrefGoogle Scholar

  • [15] Teng S., Han J.-C. and Poinsatte P. E., “Effect of Film-Hole Shape on Turbine-Blade Film-Cooling Performance,” Journal of Thermophysics and Heat Transfer, Vol. 15, No. 3, 2001, pp. 257–265. https://doi.org/10.2514/2.6621 LinkGoogle Scholar

  • [16] Harrington M. K., McWaters M. A., Bogard D. G., Lemmon C. A. and Thole K. A., “Full-Coverage Film Cooling With Short Normal Injection Holes,” Journal of Turbomachinery, Vol. 123, No. 4, 2001, pp. 798–805. https://doi.org/10.1115/1.1400111 CrossrefGoogle Scholar

  • [17] Kelly G. B. and Bogard D. G., “An Investigation of the Heat Transfer for Full Coverage Film Cooling,” ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference, American Soc. of Mechanical Engineers, Paper GT2003-38716, New York, June 2003, pp. 581–590. https://doi.org/10.1115/GT2003-38716 Google Scholar

  • [18] Gao Z. H., Narzary D. P., Mhetras S. and Han J. C., “Full-Coverage Film Cooling for a Turbine Blade with Axial-Shaped Holes,” Journal of Thermophysics and Heat Transfer, Vol. 22, No. 1, 2008, pp. 50–61. https://doi.org/10.2514/1.31206 LinkGoogle Scholar

  • [19] Wu J., Zhang L., Cheng L.-J., Jiang R., Fu Z.-Y. and Zhu H.-R., “An Experimental Investigation of Full-Coverage Film Cooling Characteristics of a Turbine Guide Vane,” ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, American Soc. of Mechanical Engineers Paper GT2018-76088, New York, June 2018. https://doi.org/10.1115/GT2018-76088 Google Scholar

  • [20] Dyson T. E., McClintic J. W., Bogard D. G. and Bradshaw S. D., “Adiabatic and Overall Effectiveness for a Fully Cooled Turbine Vane,” ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, American Soc. of Mechanical Engineers, Paper GT2013-94928, New York, June 2013 . https://doi.org/10.1115/GT2013-94928 Google Scholar

  • [21] Fu Z., Zhu H., Cheng L. and Jiang R., “Experimental Investigation on the Effect of Mainstream Turbulence on Full Coverage Film Cooling Effectiveness for a Turbine Guide Vane,” Journal of Thermal Science, Vol. 28, No. 1, 2019, pp. 145–157. https://doi.org/10.1007/s11630-019-1085-9 CrossrefGoogle Scholar

  • [22] Nirmalan N. V. and Hylton L. D., “An Experimental Study of Turbine Vane Heat Transfer with Leading Edge and Downstream Film Cooling,” Journal of Turbomachinery, Vol. 112, No. 3, 1990, pp. 477–487. https://doi.org/10.1115/1.2927683 CrossrefGoogle Scholar

  • [23] Naik S., Krueckels J., Gritsch M. and Schnieder M., “Multirow Film Cooling Performances of a High Lift Blade and Vane,” Journal of Turbomachinery, Vol. 136, No. 5, 2014, Paper 051003. https://doi.org/10.1115/1.4025274 Google Scholar

  • [24] Mhetras S., Han J.-C. and Rudolph R., “Effect of Flow Parameter Variations on Full Coverage Film-Cooling Effectiveness for a Gas Turbine Blade,” Journal of Turbomachinery, Vol. 134, No. 1, 2012, Paper 011004. https://doi.org/10.1115/1.4003228 Google Scholar

  • [25] Xue S., Newman A., Ng W., Moon H. K. and Zhang L., “Heat Transfer Performance of a Showerhead and Shaped Hole Film Cooled Vane at Transonic Conditions,” Journal of Turbomachinery, Vol. 135, No. 3, 2013, Paper 031007. https://doi.org/10.1115/1.4006666 CrossrefGoogle Scholar

  • [26] Shiau C.-C., Chowdhury N. H. K., Han J.-C., Mirzamoghadam A. V. and Riahi A., “Transonic Turbine-Vane Film Cooling with Showerhead Effect Using Pressure-Sensitive Paint Measurement Technique,” Journal of Thermophysics and Heat Transfer, Vol. 32, No. 3, 2018, pp. 637–647. https://doi.org/10.2514/1.T5230 LinkGoogle Scholar

  • [27] Fu Z.-Y., Zhu H.-R., Liu C.-L., Liu C. and Li Z., “An Experimental Investigation of Full-Coverage Film Cooling Effectiveness and Heat Transfer Coefficient of a Turbine Guide Vane in a Linear Transonic Cascade,” ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, American Soc. of Mechanical Engineers Paper GT2016-56839, New York, June 2016 . https://doi.org/10.1115/GT2016-56839 Google Scholar

  • [28] Fu Z.-Y., Zhu H.-R., Yao C.-Y., Zhang H. and Gao Q., “Experimental Investigation of Full Film Cooling Characteristics of Subsonic Turbine Guide Vane,” Journal of Propulsion Technology, Vol. 40, No. 1, 2019, pp. 158–165 (in Chinese). https://doi.org/10.13675/j.cnki.tjjs.170764 Google Scholar

  • [29] Elnady T., Hassan I., Kadem L. and Lucas T., “Experimental Investigation of Double Rows Film Cooling on Vane Pressure Side,” Proceedings of the ASME 2012 International Mechanical Engineering Congress and Exposition, American Soc. of Mechanical Engineers Paper IMECE2012-85875, Houston, 2012. https://doi.org/10.1115/IMECE2012-85875 Google Scholar

  • [30] Jung I. S. and Lee J. S., “Effects of Orientation Angles on Film Cooling over a Flat Plate: Boundary Layer Temperature Distributions and Adiabatic Film Cooling Effectiveness,” Journal of Turbomachinery, Vol. 122, No. 1, 2000, pp. 153–160. https://doi.org/10.1115/1.555437 CrossrefGoogle Scholar

  • [31] Nix A. C., Smith A. C., Diller T. E., Ng W. F. and Thole K. A., “High Intensity, Large Length-Scale Freestream Turbulence Generation in a Transonic Turbine Cascade,” ASME Turbo Expo 2002: Power for Land, Sea, and Air, American Soc. of Mechanical Engineers Paper GT2002-30523, New York, June 2002, pp. 961–968. https://doi.org/10.1115/GT2002-30523 Google Scholar

  • [32] Carullo J. S., Nasir S., Cress R. D., Ng W. F., Thole K. A., Zhang L. J. and Moon H. K., “The Effects of Freestream Turbulence, Turbulence Length Scale, and Exit Reynolds Number on Turbine Blade Heat Transfer in a Transonic Cascade,” Journal of Turbomachinery, Vol. 133, No. 1, 2011, Paper 011030. https://doi.org/10.1115/1.4001366 Google Scholar

  • [33] Nasir S., Bolchoz T., Ng W.-F., Zhang L. J., Koo Moon H. and Anthony R. J., “Showerhead Film Cooling Performance of a Turbine Vane at High Freestream Turbulence in a Transonic Cascade,” Journal of Turbomachinery, Vol. 134, No. 5, 2012, Paper 051021. https://doi.org/10.1115/1.4004200 Google Scholar

  • [34] Nathan M. L., Dyson T. E., Bogard D. G. and Bradshaw S. D., “Adiabatic and Overall Effectiveness for the Showerhead Film Cooling of a Turbine Vane,” Journal of Turbomachinery, Vol. 136, No. 3, 2014, Paper 031005. https://doi.org/10.1115/1.4024680 Google Scholar

  • [35] Guo S. M., Lai C. C., Jones T. V., Oldfield M. L. G., Lock G. D. and Rawlinson A. J., “Influence of Surface Roughness on Heat Transfer and Effectiveness for a Fully Film Cooled Nozzle Guide Vane Measured by Wide Band Liquid Crystals and Direct Heat Flux Gages,” Journal of Turbomachinery, Vol. 122, No. 4, 2000, pp. 709–716. https://doi.org/10.1115/1.1312798 Google Scholar

  • [36] Ligrani P., Goodro M., Fox M. D. and Moon H., “Full-Coverage Film Cooling: Heat Transfer Coefficients and Film Effectiveness for a Sparse Hole Array at Different Blowing Ratios and Contraction Ratios,” Journal of Heat Transfer, Vol. 137, No. 3, 2015, Paper 032201. https://doi.org/10.1115/1.4029168 Google Scholar

  • [37] Ou S. and Rivir R. B.,, “Leading Edge Film Cooling Heat Transfer with High Free Stream Turbulence Using a Transient Liquid Crystal Image Method,” International Journal of Heat and Fluid Flow, Vol. 22, No. 6, 2001, pp. 614–623. https://doi.org/10.1016/S0142-727X(01)00121-7 Google Scholar

  • [38] Ling J. P. C. W., Ireland P. T. and Turner L.,, “A Technique for Processing Transient Heat Transfer, Liquid Crystal Experiments in the Presence of Lateral Conduction,” Journal of Turbomachinery, Vol. 126, No. 2, 2004, pp. 247–258. https://doi.org/10.1115/1.1740777 CrossrefGoogle Scholar

  • [39] Jiang H., Chen W., Zhang Q. and He L., “Analytical-Solution Based Corner Correction for Transient Thermal Measurement,” Journal of Heat Transfer, Vol. 137, No. 11, 2015, Paper 111302. https://doi.org/10.1115/1.4030980 Google Scholar

  • [40] Moffat R. J., “Describing the Uncertainties in Experimental Results,” Experimental Thermal and Fluid Science, Vol. 1, No. 1, 1988, pp. 3–17. https://doi.org/10.1016/0894-1777(88)90043-X CrossrefGoogle Scholar

  • [41] Nasir S., Carullo J. S., Ng W.-F., Thole K. A., Wu H., Zhang L. J. and Moon H. K., “Effects of Large Scale High Freestream Turbulence and Exit Reynolds Number on Turbine Vane Heat Transfer in a Transonic Cascade,” Journal of Turbomachinery, Vol. 131, No. 2, 2009, Paper 021021. https://doi.org/10.1115/1.2952381 CrossrefGoogle Scholar

  • [42] Goldstein R. J., Eckert E. R. G. and Burggraf F., “Effects of Hole Geometry and Density on Three-Dimensional Film Cooling,” International Journal of Heat and Mass Transfer, Vol. 17, No. 5, 1974, pp. 595–607. https://doi.org/10.1016/0017-9310(74)90007-6 CrossrefGoogle Scholar

  • [43] Kohil A. and Bogard D. G., “Effects of Hole Shape on Film Cooling with Large Angle Injection,” ASME 1999 International Gas Turbine and Aeroengine Congress and Exhibition, American Soc. of Mechanical Engineers Paper 99-GT-165, New York, June 1999. https://doi.org/10.1115/99-GT-165 Google Scholar

  • [44] Gritsch M., Schulz A. and Wittig S., “Adiabatic Wall Effectiveness Measurements of Film-Cooling Holes with Expanded Exits,” Journal of Turbomachinery, Vol. 120, No. 3, 1998, pp. 549–556. https://doi.org/10.1115/1.2841752 CrossrefGoogle Scholar

  • [45] Bell C. M., Hamakawa H. and Ligrani P. M., “Film Cooling From Shaped Holes,” Journal of Heat Transfer, Vol. 122, No. 2, 2000, pp. 224–232. https://doi.org/10.1115/1.521484 CrossrefGoogle Scholar

  • [46] Kohli A. and Bogard D. G., “Effects of Very High Free-Stream Turbulence on the Jet-Mainstream Interaction in a Film Cooling Flow,” ASME 1997 International Gas Turbine and Aeroengine Congress and Exhibition, American Soc. of Mechanical Engineers Paper 97-GT-121, New York, June 1997. https://doi.org/10.1115/97-GT-121 Google Scholar

  • [47] Han J. C., Dutta S. and Ekkad S., Gas Turbine Heat Transfer and Cooling Technology, 2nd ed., CRC Press, New York, 2012, Chaps. 1, 3. CrossrefGoogle Scholar

  • [48] Mehendale A. B. and Han J. C., “Reynolds Number Effect on Leading Edge Film Effectiveness and Heat Transfer Coefficient,” International Journal of Heat and Mass Transfer, Vol. 36, No. 15, 1993, pp. 3723–3730. https://doi.org/10.1016/0017-9310(93)90052-8 CrossrefGoogle Scholar

  • [49] Liess C., “Experimental Investigation of Film Cooling With Ejection From a Row of Holes for the Application to Gas Turbine Blades,” Journal of Engineering for Power, Vol. 97, No. 1, 1975, pp. 21–27. https://doi.org/10.1115/1.3445904 CrossrefGoogle Scholar

  • [50] Gritsch M., Schulz A. and Wittig S., “Heat Transfer Coefficient Measurements of Film-Cooling Holes with Expanded Exits,” ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition, American Soc. of Mechanical Engineers Paper 98-GT-028, New York, June 1998. https://doi.org/10.1115/98-GT-028 Google Scholar

  • [51] Yu Y., Yen C. H., Shih T. I. P., Chyu M. K. and Gogineni S., “Film Cooling Effectiveness and Heat Transfer Coefficient Distributions Around Diffusion Shaped Holes,” Journal of Heat Transfer, Vol. 124, No. 5, 2002, pp. 820–827. https://doi.org/10.1115/1.1418367 CrossrefGoogle Scholar

  • [52] Sen B., Schmidt D. L. and Bogard D. G., “Film Cooling With Compound Angle Holes: Heat Transfer,” Journal of Turbomachinery, Vol. 118, No. 4, 1996, pp. 800–806. https://doi.org/10.1115/1.2840937 CrossrefGoogle Scholar

  • [53] Albert J. E., Bogard D. G. and Cunha F., “Adiabatic and Overall Effectiveness for a Film Cooled Blade,” ASME Turbo Expo 2004: Power for Land, Sea, and Air, American Soc. of Mechanical Engineers Paper GT2004-53998, New York, June 2004, pp. 251–259. https://doi.org/10.1115/GT2004-53998 Google Scholar

  • [54] Dees J. E., Bogard D. G., Ledezma G. A. and Laskowski G. M., “Overall and Adiabatic Effectiveness Values on a Scaled Up, Simulated Gas Turbine Vane,” Journal of Turbomachinery, Vol. 135, No. 5, 2013, Paper 051017. https://doi.org/10.1115/1.4023105 Google Scholar

  • [55] Mouzon B. D., Terrell E. J., Albert J. E. and Bogard D. G., “Net Heat Flux Reduction and Overall Effectiveness for a Turbine Blade Leading Edge,” ASME Turbo Expo 2005: Power for Land, Sea, and Air, American Soc. of Mechanical Engineers Paper GT2005-69002, New York, June 2005, pp. 825–832. https://doi.org/10.1115/GT2005-69002 Google Scholar

  • [56] Chavez K., Slavens T. N. and Bogard D., “Effects of Internal and Film Cooling on the Overall Effectiveness of a Fully Cooled Turbine Airfoil with Shaped Holes,” ASME Turbo Expo 2016: Turbomachinery Technical Conference and Exposition, American Soc. of Mechanical Engineers Paper GT2016-57992, New York, June 2016. https://doi.org/10.1115/GT2016-57992 Google Scholar