Skip to main content
Skip to article control options
No AccessRegular Article

Investigation of Spectral Characteristics by Passive Control Methods Past a Supersonic Cavity

Published Online:https://doi.org/10.2514/1.J056689

Numerical investigations of the leading-edge sawtooth spoiler and slanted aft wall were performed to explore the mechanisms of the suppression of pressure fluctuations in an open-type cavity flow, focusing on the pressure fluctuation spectra and their spatial distributions. The rectangular cavity has a length-to-depth ratio of six, and the freestream Mach number is 1.5. Improved delayed detached-eddy simulation was used to predict the unsteady cavity flows and pressure fluctuations. Both control methods exhibited effectiveness in pressure fluctuation suppression, but their respective mechanisms are quite different. It was observed that the leading-edge sawtooth spoiler lifts the shear layer and reduces its interaction with the aft wall. The energy distribution of Rossiter modes changes significantly, which indicates that the pressure fluctuation feedback loop inside the cavity has changed. However, the slanted aft wall merely alters the cavity flowfield. Unlike the leading-edge method, the Rossiter mode distribution and the feedback mechanism remain unchanged. The slanted aft wall mainly suppresses the upstream-traveling perturbation generated by the cavity trailing edge but has little influence on the downstream-traveling perturbation.

References

  • [1] Krishnamurty K., “Acoustic Radiation from Two-Dimensional Rectangular Cutouts in Aerodynamic Surfaces,” NACA TR TN-3487, 1955. Google Scholar

  • [2] Roshko A., “Some Measurements of Flow in a Rectangular Cutout,” NACA TR TN-3488, 1955. Google Scholar

  • [3] Rossiter J. E., “Wind-Tunnel Experiments on the Flow over Rectangular Cavities at Subsonic and Transonic Speeds,” Tech. Rept., Aeronautical Research Council, Ministry of Aviation, Farnborough, 1966, Paper 64037. Google Scholar

  • [4] Heller H. H., Holmes D. G. and Covert E. E., “Flow-Induced Pressure Oscillations in Shallow Cavities,” Journal of Sound and Vibration, Vol. 18, No. 4, 1971, pp. 545–553. doi:https://doi.org/10.1016/0022-460X(71)90105-2 JSVIAG 0022-460X CrossrefGoogle Scholar

  • [5] Stallings R. L. and Wilcox F. J., “Experimental Cavity Pressure Distributions at Supersonic Speeds,” NASA TR TP-2683, 1987. Google Scholar

  • [6] Plentovich E. B., Robert L. S. and Tracy M. B., “Experimental Cavity Pressure Measurements at Subsonic and Transonic Speeds: Static-Pressure Results,” NASA TR TP-3358, 1993. Google Scholar

  • [7] Tracy M. B. and Plentovich E. B., “Cavity Unsteady-Pressure Measurements at Subsonic and Transonic Speeds,” NASA TR TP-3669, 1997. Google Scholar

  • [8] Cattafesta L. N., Song Q., Williams D. R., Rowley C. W. and Alvi F. S., “Active Control of Flow-Induced Cavity Oscillations,” Progress in Aerospace Sciences, Vol. 44, Nos. 7–8, 2008, pp. 479–502. doi:https://doi.org/10.1016/j.paerosci.2008.07.002 PAESD6 0376-0421 CrossrefGoogle Scholar

  • [9] Lawson S. J. and Barakos G. N., “Review of Numerical Simulations for High-Speed, Turbulent Cavity Flows,” Progress in Aerospace Sciences, Vol. 47, No. 3, 2011, pp. 186–216. doi:https://doi.org/10.1016/j.paerosci.2010.11.002 PAESD6 0376-0421 CrossrefGoogle Scholar

  • [10] Shaw L., Clark R. and Talmadge D., “F-111 Generic Weapons Bay Acoustic Environment,” Journal of Aircraft, Vol. 25, No. 2, 1988, pp. 147–153. doi:https://doi.org/10.2514/3.45555 LinkGoogle Scholar

  • [11] Flaherty W., Reedy T. M., Elliott G. S., Austin J. M., Schmit R. F. and Crafton J., “Investigation of Cavity Flow Using Fast-Response Pressure-Sensitive Paint,” AIAA Journal, Vol. 52, No. 11, 2014, pp. 2462–2470. doi:https://doi.org/10.2514/1.J052864 AIAJAH 0001-1452 LinkGoogle Scholar

  • [12] Shaaban M. and Mohany A., “Passive Control of Flow-Excited Acoustic Resonance in Rectangular Cavities Using Upstream Mounted Blocks,” Experiments in Fluids, Vol. 56, No. 4, 2015, p. 72. doi:https://doi.org/10.1007/s00348-015-1908-8 EXFLDU 0723-4864 CrossrefGoogle Scholar

  • [13] Saddington A. J., Knowles K. and Thangamani V., “Scale Effects on the Performance of Sawtooth Spoilers in Transonic Rectangular Cavity Flow,” Experiments in Fluids, Vol. 57, No. 1, 2016, p. 2. doi:https://doi.org/10.1007/s00348-015-2088-2 EXFLDU 0723-4864 CrossrefGoogle Scholar

  • [14] Saddington A. J., Thangamani V. and Knowles K., “Comparison of Passive Flow Control Methods for a Cavity in Transonic Flow,” Journal of Aircraft, Vol. 53, No. 5, 2016, pp. 1439–1447. doi:https://doi.org/10.2514/1.C033365 LinkGoogle Scholar

  • [15] Perng S. W. and Dolling D. S., “Suppression of Pressure Oscillations in High-Mach-Number, Turbulent, Cavity Flow,” Journal of Aircraft, Vol. 38, No. 2, 2001, pp. 248–256. doi:https://doi.org/10.2514/2.2782 LinkGoogle Scholar

  • [16] Vikramaditya N. S. and Kurian J., “Pressure Oscillations from Cavities with Ramp,” AIAA Journal, Vol. 47, No. 12, 2009, pp. 2974–2984. doi:https://doi.org/10.2514/1.43068 AIAJAH 0001-1452 LinkGoogle Scholar

  • [17] Vikramaditya N. S. and Kurian J., “Effect of AFT Wall Slope on Cavity Pressure Oscillations in Supersonic Flows,” Aeronautical Journal, Vol. 113, No. 1143, 2009, pp. 291–300. doi:https://doi.org/10.1017/S0001924000002967 CrossrefGoogle Scholar

  • [18] Pey Y. Y., Chua L. P. and Siauw W. L., “Effect of Trailing Edge Ramp on Cavity Flow Structures and Pressure Drag,” International Journal of Heat and Fluid Flow, Vol. 45, Feb. 2014, pp. 53–71. doi:https://doi.org/10.1016/j.ijheatfluidflow.2013.11.008 IJHFD2 0142-727X CrossrefGoogle Scholar

  • [19] Pey Y. Y. and Chua L. P., “Effects of Trailing Wall Modifications on Cavity Wall Pressure,” Experimental Thermal and Fluid Science, Vol. 57, Sept. 2014, pp. 250–260. doi:https://doi.org/10.1016/j.expthermflusci.2014.05.005 ETFSEO 0894-1777 CrossrefGoogle Scholar

  • [20] Maurya P. K., Rajeev C., Kumar V. R. R. and Vaidyanathan A., “Effect of Aft Wall Offset and Ramp on Pressure Oscillation from Confined Supersonic Flow over Cavity,” Experimental Thermal and Fluid Science, Vol. 68, Nov. 2015, pp. 559–573. doi:https://doi.org/10.1016/j.expthermflusci.2015.06.014 ETFSEO 0894-1777 CrossrefGoogle Scholar

  • [21] Arunajatesan S., Kannepalli C., Sinha N., Sheehan M., Alvi F., Shumway G. and Ukeiley L., “Suppression of Cavity Loads Using Leading-Edge Blowing,” AIAA Journal, Vol. 47, No. 5, 2009, pp. 1132–1144. doi:https://doi.org/10.2514/1.38211 AIAJAH 0001-1452 LinkGoogle Scholar

  • [22] Nayyar P., Barakos G., Badcock K. and Kirkham D., “Analysis and Control of Transonic Cavity Flow Using DES and LES,” 35th AIAA Fluid Dynamics Conference and Exhibit, AIAA Paper 2005-5267, June 2005. LinkGoogle Scholar

  • [23] Ashworth R, “DES of a Cavity with Spoiler,” edited by Peng S.-H. and Haase W., Advances in Hybrid RANS-LES Modelling: Papers Contributed to the 2007 Symposium of Hybrid RANS-LES Methods, Vol. 97, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Springer, Berlin, 2008, pp. 162–171. Google Scholar

  • [24] Lawson S. J. and Barakos G. N., “Assessment of Passive Flow Control for Transonic Cavity Flow Using Detached-Eddy Simulation,” Journal of Aircraft, Vol. 46, No. 3, 2009, pp. 1009–1029. doi:https://doi.org/10.2514/1.39894 LinkGoogle Scholar

  • [25] Kegerise M. A., Spina E. F., Garg S. and Cattafesta L. N., “Mode-Switching and Nonlinear Effects in Compressible Flow over a Cavity,” Physics of Fluids, Vol. 16, No. 3, 2004, pp. 678–687. doi:https://doi.org/10.1063/1.1643736 CrossrefGoogle Scholar

  • [26] Larchevêque L., Sagaut P., Lê T.-H. and Comte P., “Large-Eddy Simulation of a Compressible Flow in a Three-Dimensional Open Cavity at High Reynolds Number,” Journal of Fluid Mechanics, Vol. 516, Oct. 2004, pp. 265–301. doi:https://doi.org/10.1017/S0022112004000709 JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [27] Xiao Z. X., Liu J., Huang J. B. and Fu S., “Numerical Dissipation Effects on Massive Separation Around Tandem Cylinders,” AIAA Journal, Vol. 50, No. 5, 2012, pp. 1119–1136. doi:https://doi.org/10.2514/1.J051299 AIAJAH 0001-1452 LinkGoogle Scholar

  • [28] Xiao Z. X. and Luo K. Y., “Improved Delayed Detached-Eddy Simulation of Massive Separation Around Triple Cylinders,” Acta Mechanica Sinica, Vol. 31, No. 6, 2015, pp. 799–816. doi:https://doi.org/10.1007/s10409-015-0445-2 LHHPAE 0567-7718 CrossrefGoogle Scholar

  • [29] Xiao Z. X., Liu J., Luo K. Y., Huang J. B. and Fu S., “Investigation of Flows Around a Rudimentary Landing Gear with Advanced Detached-Eddy-Simulation Approaches,” AIAA Journal, Vol. 51, No. 1, 2013, pp. 107–125. doi:https://doi.org/10.2514/1.J051598 AIAJAH 0001-1452 LinkGoogle Scholar

  • [30] Huang J. B., Xiao Z. X., Liu J. and Fu S., “Simulation of Shock Wave Buffet and Its Suppression on an OAT15A Supercritical Airfoil by IDDES,” Science China—Physics, Mechanics & Astronomy, Vol. 55, No. 2, 2012, pp. 260–271. doi:https://doi.org/10.1007/s11433-011-4601-9 CrossrefGoogle Scholar

  • [31] Xiao L. H., Xiao Z. X., Duan Z. W. and Fu S., “Improved-Delayed-Detached-Eddy Simulation of Cavity-Induced Transition in Hypersonic Boundary Layer,” International Journal of Heat and Fluid Flow, Vol. 51, Feb. 2015, pp. 138–150. doi:https://doi.org/10.1016/j.ijheatfluidflow.2014.10.007 IJHFD2 0142-727X CrossrefGoogle Scholar

  • [32] Shur M. L., Spalart P. R., Strelets M. K. and Travin A. K., “A Hybrid RANS-LES Approach with Delayed-DES and Wall-Modelled LES Capabilities,” International Journal of Heat and Fluid Flow, Vol. 29, No. 6, 2008, pp. 1638–1649. doi:https://doi.org/10.1016/j.ijheatfluidflow.2008.07.001 IJHFD2 0142-727X CrossrefGoogle Scholar

  • [33] Menter F. R., “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications,” AIAA Journal, Vol. 32, No. 8, 1994, pp. 1598–1605. doi:https://doi.org/10.2514/3.12149 AIAJAH 0001-1452 LinkGoogle Scholar

  • [34] Menter F. R., “Review of the Shear-Stress Transport Turbulence Model Experience from an Industrial Perspective,” International Journal of Computational Fluid Dynamics, Vol. 23, No. 4, 2009, pp. 305–316. doi:https://doi.org/10.1080/10618560902773387 IJCFEC 1061-8562 CrossrefGoogle Scholar

  • [35] Ren Y. X., “A Robust Shock-Capturing Scheme Based on Rotated Riemann Solvers,” Computers & Fluids, Vol. 32, No. 10, 2003, pp. 1379–1403. doi:https://doi.org/10.1016/S0045-7930(02)00114-7 CrossrefGoogle Scholar

  • [36] van Leer B., “Towards the Ultimate Conservative Difference Scheme. 5. A Second Order Sequel to Godunov’s Method,” Journal of Computational Physics, Vol. 32, No. 1, 1979, pp. 101–136. doi:https://doi.org/10.1016/0021-9991(79)90145-1 JCTPAH 0021-9991 CrossrefGoogle Scholar

  • [37] Strelets M., “Detached Eddy Simulation of Massively Separated Flows,” 39th Aerospace Sciences Meeting and Exhibit, AIAA Paper 2001-1021, Jan. 2001. LinkGoogle Scholar

  • [38] Mockett C., “A Comprehensive Study of Detached-Eddy Simulation,” Ph.D. Thesis, Technical Univ. Berlin, Berlin, 2009. Google Scholar

  • [39] Luo K. Y., Weng Z., Xiao Z. X. and Fu S., “Improved Delayed Detached-Eddy Simulations of Sawtooth Spoiler Control Before Supersonic Cavity,” International Journal of Heat and Fluid Flow, Vol. 63, Feb. 2017, pp. 172–189. doi:https://doi.org/10.1016/j.ijheatfluidflow.2017.01.012 IJHFD2 0142-727X CrossrefGoogle Scholar

  • [40] Dudley J., Shumway G., Tinney C. and Ukeiley L., “Flow Characteristics of the University of Florida-REEF Supersonic Wind Tunnel,” 26th AIAA Aerodynamic Measurement Technology and Ground Testing Conference, AIAA Paper 2008-3942, June 2008. LinkGoogle Scholar

  • [41] Dudley J. G., “The Mechanisms for Passive Suppression of Fluctuating Surface Pressure in a Supersonic Cavity Flow,” Ph.D. Thesis, Univ. of Florida, Gainesville, FL, 2010. Google Scholar

  • [42] Dudley J. G. and Ukeiley L., “Passively Controlled Supersonic Cavity Flow Using a Spanwise Cylinder,” Experiments in Fluids, Vol. 55, No. 9, 2014, p. 1810. doi:https://doi.org/10.1007/s00348-014-1810-9 EXFLDU 0723-4864 CrossrefGoogle Scholar

  • [43] Dudley J. and Ukeiley L., “Detached Eddy Simulation of a Supersonic Cavity Flow with and Without Passive Flow Control,” 20th AIAA Computational Fluid Dynamics Conference, AIAA Paper 2011-3844, June 2011. LinkGoogle Scholar

  • [44] Crook S. D., Lau T. C. W. and Kelso R. M., “Three-Dimensional Flow Within Shallow, Narrow Cavities,” Journal of Fluid Mechanics, Vol. 735, Nov. 2013, pp. 587–612. doi:https://doi.org/10.1017/jfm.2013.519 JFLSA7 0022-1120 CrossrefGoogle Scholar

  • [45] Burg J., “Maximum Entropy Spectral Analysis,” Ph.D. Thesis, Stanford Univ., Stanford, CA, 1975. Google Scholar