Chronological Index

C88-176 Drag Reduction Factor Due to Ground Effect. Young B. Suh and Cyrus Ostowari, Texas A&M University (25, 11, p. 1071) Engineering Note
Technical Comment by E. V. Laitone, University of California at Berkeley (27, 1, p. 96)

C88-182 Improved Thin-Airfoil Theory. M. F. Zedan and K. Abu-Abdou, King Saud University, Saudi Arabia (25, 12, p. 1122) Article
Technical Comment by A. Plotkin, San Diego State University (27, 5, p. 478)
Reply (27, 5, p. 479)

C89-076 Induced Drag and the Ideal Wake of a Lifting Wing. C. W. McCutchen, National Institutes of Health (26, 5, p. 489) Article
Technical Comment by W. R. Sears, University of Arizona (27, 2, p. 191)
Reply (27, 2, p. 191)

C89-001 Rotor Noise Due to Atmospheric Turbulence Ingestion

C89-002 Rotor Noise Due to Atmospheric Turbulence Ingestion
—Part II: Aeroacoustic Results. R. K. Amiet, J. C. Simonich, R. H. Schlinker, United Technologies Research Center; and E. M. Greitzer, Massachusetts Institute of Technology (27, 1, p. 7) Article

C90-003 Low-Speed Unsteady Aerodynamics of a Pitching Straked Wing at High Incidence—Part I: Test Program. R. G. den Boer, National Aerospace Laboratory (NLR), the Netherlands; and A. M. Cunningham Jr., General Dynamics (27, 1, p. 23) Article

C90-004 Low-Speed Unsteady Aerodynamics of a Pitching Straked Wing at High Incidence—Part II: Harmonic Analysis. A. M. Cunningham Jr., General Dynamics; and R. G. den Boer, National Aerospace Laboratory (NLR), the Netherlands (27, 1, p. 31) Article

C90-038 Application of Multiple Grids Topology to Supersonic Internal/External Flow Interactions. M. Kathong, Old Dominion University; R. E. Smith, NASA Langley Research Center; and S. N. Tiwari, Old Dominion University (27, 3, p. 245) Article

C90-040 Measured Forces and Moments on a Delta Wing During Pitch-Up. M. B. Bragg and M. R. Soltani, Ohio State University (27, 3, p. 262) Article

C90-042 Qualitative and Quantitative Comparison of Government and Industry Agility Metrics. R. Bitten, Rockwell International (27, 3, p. 276) Article based on AIAA Paper 89-3389 CP898

C90-043 Control of Turbulent Separated Flow over a Rearward-Facing Ramp Using Longitudinal Grooves. J. C. Lin and F. G. Howard, NASA Langley Research Center; and G. V. Selby, Old Dominion University (27, 3, p. 283) Engineering Note

C90-046 Static Stability and Control Characteristics of Scissor Wing Configurations. Kamran Rokhsaz and Bruce P. Selberg, University of Missouri, Rolla (27, 4, p. 294) Article based on AIAA Paper 89-0013

C90-048 Augmenting Flight Simulator Motion Response to Turbulence. Lloyd D. Reid and Paul A. Robinson, University of Toronto Institute for Aerospace Studies, Canada (27, 4, p. 306) Article

C90-051 Integrated Structure/Control Concepts for Oblique Wing Roll Control and Trim. Terrence A. Weisshaar, Purdue University (27, 4, p. 326) Article

C90-052 Active Flutter Suppression for a Wing Model. G. L. Chiringhelli, M. Lanz and P. Mantegazza, Politecnico di Milano, Italy (27, 4, p. 334) Article based on ICAS Paper 88-1.2.2

C90-055 Proposed Integration of Notech-Strain and Fatigue Crack-Growth Analyses. D. L. Ball, General Dynamics/Fort Worth Division (27, 4, p. 358) Article

C90-056 Sensitivity Derivatives of Flutter Characteristics and Stability Margins for Aeroelastic Design. M. Karpel, Technion—Israel Institute of Technology (27, 4, p. 368) Article

C90-057 Simple Marching-Vortex Model for Two-Dimensional Unsteady Aerodynamics. James DeLaurier and James Winfield, University of Toronto, Canada (27, 4, p. 376) Engineering Note

C90-058 Importance of Anisotropy on Design of Compression-Loaded Composite Corrugated Panels. Richard D. Young and Zafer Gurdal, Virginia Polytechnic Institute and State University (27, 4, p. 378) Engineering Note

C90-059 Simulator Networking in Helicopter Air-to-Air Combat Training. James W. Dees and Timothy R. Cornett, U.S. Army Aviation Center, Fort Rucker (27, 4, p. 381) Engineering Note

C90-060 Evaluation of Three Turbulence Models in Static Air Loads and Dynamic Stall Predictions. Jiunn-Chi Wu, National Central University, Taiwan, ROC; Dennis L. Huff, NASA Lewis Research Center; and L. N. Sankar, Georgia Institute of Technology (27, 4, p. 382) Engineering Note based on AIAA Paper 89-0609

C90-062 Unsteady Inviscid and Viscous Computations for Vortex-Dominated Flows. Osama A. Kandil and H. Andrew Chuang, Old Dominion University (27, 5, p. 387) Synoptic

C90-064 Dynamic Stall of a Constant-Rate Pitching Airfoil. Miguel R. Visbal, Wright Research and Development Center, Wright-Patterson AFB (27, 5, p. 400) Article based on AIAA Paper 88-0132

C90-066 Blockage Corrections at High Angles of Attack in a Wind Tunnel. P. A. Gili, D. M. Pastrone and F. B. Quagliotti, Politecnico di Torino, Italy; and E. Barbantini, Aereitalia Defense Aircraft Group, Italy (27, 5, p. 413) Article based on ICAS Paper 88-3.8.3

C90-070 Euler Flutter Analysis of Airfoils Using Unstructured Dynamic Meshes. Russ D. Rausch, Purdue University; John T. Batina, NASA Langley Research Center; and Henry T. Y. Yang, Purdue University (27, 5, p. 436) Article based on AIAA Paper 89-1384 CP891

C90-072 Reduced-Order Aeroelastic Models via Dynamic Residualization. M. Karpel, Technion—Israel Institute of Technology (27, 5, p. 449) Article

C90-073 Low Density, High-Stiffness, Aluminum-Lithium Materials. M. Peters, German Aerospace Research Establishment (DLR), Germany; and W. Bunk, Technical University of Aachen and German Aerospace Research Establishment (DLR), Germany (27, 5, p. 456) Engineering Note based on ICAS Paper 88-6.7.2

C90-074 Takeoff Characteristics of Turbofan Engines. Young B. Suh, Texas A&M University (27, 5, p. 458) Engineering Note

C90-075 Optimum Design of Thin-Walled Box Beams with Coupled Bending and Torsion Usage Frequency Constraints. Ramana V. Grandhi and Jamshed K. Moradmand, Wright State University (27, 5, p. 462) Engineering Note

C90-076 Low-Speed Pressure Distribution on Semi-Infinite Two-Dimensional Bodies with Elliptical Noses. Erik S. Larson, FAA, The Aeronautical Research Institute of Sweden (27, 5, p. 464) Engineering Note

C90-077 Cloud-to-Ground Strikes to the NASA F-106 Airplane. Vladislav Mazur, NOAA/ERL/National Severe Storms Laboratory; and Bruce D. Fisher, NASA Langley Research Center (27, 5, p. 466) Engineering Note based on AIAA Paper 88-0390

C90-080 Connection Between Leading-Edge Sweep, Vortex Lift, and Vortex Strength for Delta Wings. Michael J. Hensch, PRC Aerospace Technologies Division; and James M. Lucking, NASA Langley Research Center (27, 5, p. 473) Engineering Note

C90-083 Various Sources of Wing Rock. L. E. Ericsson, Lockheed Missiles & Space Company, Inc. (27, 6, p. 488) Article

C90-088 Flow Visualization of the Mach Number Effects on Dynamic Stall of an Oscillating Airfoil. M. S. Chandrasekhara, Naval Postgraduate School; and L. W. Carr, NASA Ames Research Center (27, 6, p. 516) Article based on AIAA Paper 89-0023

C90-091 Acoustics of Ultralight Airplanes. Hanno Heller, Helmut Dahlern and Werner Dobrzynski, German Aerospace Research Establishment, FRG (27, 6, p. 529) Article based on ICAS Paper 88-2.9.3

C90-092 Investigation of the Near Wake of a Propan. D. B. Hanson, Hamilton Standard; and W. P. Patrick, United Technologies Research Center (27, 6, p. 536) Article based on AIAA Paper 89-1095

C90-093 Analyses of Arrow Air DC-8-63 Accident of December 12, 1985: Gander, Newfoundland. James K. Luers and Mark A. Dietenberger, University of Dayton Research Institute (27, 6, p. 543) Article

C90-094 Improved, Robust, Axial Line Singularity Method for Bodies of Revolution. Michael J. Hensch, PRC Aerospace Technologies Division (27, 6, p. 551) Article based on AIAA Paper 89-2176 CP896
C90-095 Static Aeroelastic Tailoring for Oblique Wing Lateral Trim. Jonathan D. Bohmann, Purdue University; Clinton V. Eckstrom, NASA Langley Research Center; and Terrence A. Weisshaar, Purdue University (27, 6, p. 558) Article based on AIAA Paper 88-2263 CP883

C90-097 Hypervelocity, Minimum-Radii, Coordinated Turns. Michael E. Tauber, NASA Ames Research Center (27, 6, p. 566) Engineering Note

C90-099 Effect of Detailed Surface Geometry on Riblet Drag Reduction Performance. Michael J. Walsh, NASA Langley Research Center (27, 6, p. 572) Engineering Note

C90-100 Flow Structure Generated by Oscillating Delta-Wing Segments. Thomas Utsch and Donald Rockwell, Lehigh University (27, 6, p. 574) Engineering Note

C90-104 Residual Strains Surrounding Split-Sleeve Cold Expanded Holes in 7075-T651 Aluminum. R. E. Link, David Taylor Research Center; and R. J. Sanford, University of Maryland (27, 7, p. 599) Article

C90-107 Thin-Walled Composite Beams Under Bending, Torsional, and Extensional Loads. Ramesh Chandra, Alan D. Stempie and Inderjit Chopra, University of Maryland (27, 7, p. 619) Article

C90-108 Minimum Induced Drag for Wings with Spanwise Camber. Martin V. Lowson, University of Bristol, England, UK (27, 7, p. 627) Article

C90-109 Optimization of Glides for Constant Wind Fields and Course Headings. Scott A. Jenkins and Joseph Wasyl, University of California at San Diego (27, 7, p. 632) Article

C90-113 Development of a Real-Time Aeropropulsion Analysis Technique for the X-29A Advanced Technical Demonstrator. Ronald J. Ray and John W. Hicks, NASA Ames Research Center; and Russ I. Alexander, Computing Devices Company, Canada (27, 7, p. 660) Article

C90-114 Iterative Algorithm for Correlation of Strain Gauge Data with Aerodynamic Load. Gene Xu and Michael West, Lockheed Engineering and Science Company (27, 7, p. 668) Engineering Note

C90-115 Yaw Damping of Elliptic Bodies at High Angles of Attack. William B. Blake, Wright Research and Development Center, Wright-Patterson AFB; and Billy P. Barnhart, Bhire Applied Research, Inc. (27, 7, p. 670) Engineering Note based on AIAA Paper 90-0068

C90-118 Method for Simultaneous Wing Aerodynamic and Structural Load Prediction. Mark Drela, Massachusetts Institute of Technology (27, 8, p. 692) Article based on AIAA Paper 89-2166 CP896

C90-119 Modeling of Turbulence and Downbursts for Flight Simulators. Paul A. Robinson and Lloyd D. Reid, University of Toronto Institute for Aerospace Studies, Canada (27, 8, p. 700) Article based on AIAA Paper 89-3224 CP897

C90-120 Twin-Jet Screech Suppression. Leonard Shaw, Wright-Patterson AFB (27, 8, p. 708) Article based on AIAA Paper 89-1140

C90-122 Hygrothermal Effects on Structure-Borne Noise Transmission of Stiffened Laminated Composite Plates. Constantinos S. Lyrintzis, San Diego State University; and Dimitri A. Bobilos, Integrated Aerospace Sciences Corporation (27, 8, p. 722) Article

C90-123 Stereopsis as a Visual Cue in Flight Simulation. Reed P. Tidwell, Evans & Sutherland (27, 8, p. 731) Engineering Note
C90-124 Comparison of One- and Two-Interface Methods for Tunnel Wall Interference Calculation. C. F. Lo and N. Ulbrich, University of Tennessee Space Institute (27, 8, p. 732) Engineering Note

C90-129 Aerodynamic Stability of Aircraft with Circulation Control Wings. David J. Haas, David Taylor Research Center; and Interjet Chopra, University of Maryland (27, 9, p. 771) Article based on AIAA Paper 89-1184 CP891

C90-133 Ideal Efficiency of Propellers: Theodorsen Revisited. H. S. Ribner, University of Toronto, Canada and NASA Langley Research Center; and S. P. Foster, University of Toronto, Canada (27, 9, p. 810) Article

C90-137 Effect of a Single Strake on the Forebody Vortex Asymmetry. T. Terry Ng, Eidetics International, Inc. (27, 9, p. 844) Engineering Note

C90-143 Application of Lagrangian Blending Functions for Grid Generation Around Airplane Geometries. Jamshid Samareh-Abolhassani and Ideen Sadreghahighi, Old Dominion University; Robert E. Smith, NASA Langley Research Center; and Surendra N. Tiwari, Old Dominion University (27, 10, p. 873) Article based on AIAA Paper 90-0009

C90-145 Numerical Simulation of an F-16A at Angle of Attack. G. W. Huband, J. S. Shang and M. J. Aftosmis, Wright Research and Development Center, Wright-Patterson AFB (27, 10, p. 886) Article based on AIAA Paper 90-0100

C90-149 Accurate Method for Calculating Initial Development of Vortex Sheets. Rajendra K. Bera, National Aeronautical Laboratory, India (27, 10, p. 910) Engineering Note

C90-152 DFW Microburst Model Based on AA-539 Data. Waller J. Grantham and Guy G. Roetcisoender, Washington State University; and Edwin K. Parks, University of Arizona (27, 11, p. 917) Article

C90-155 Series Complex-Potential Solution of Flow Around Arbitrary Airfoils. M. F. Zedan, King Saud University, Saudi Arabia (27, 11, p. 936) Article

C90-159 Design of a Natural Laminar Flow Airfoil for a Light Aircraft. K. R. Sripathi, G. S. Dwarakanath and P. Ramamoorthy, National Aeronautical Laboratory, India (27, 11, p. 966) Engineering Note

C90-161 Airfoil Design for Endurance Unmanned Air Vehicles. Richard M. Howard, Naval Postgraduate School (27, 11, p. 971) Engineering Note

C90-162 Constant Swirl Angle Inlet Guide Vanes. Richard M. Andres, Parks College, St. Louis University (27, 11, p. 973) Engineering Note

C90-163 Two-Dimensional Wind-Tunnel Wall Interference. A. V. Murthy, Vigyan Research Associates; and E. Wedemeyer, Deutsche Forschung und Versuchsanstalt fur Luft- und Raumfahrt e. V., Germany (27, 11, p. 975) Engineering Note

C90-165 Sensitivity Analysis and Multidisciplinary Optimization for Aircraft Design: Recent Advances and Results. Jaroslav Sobieszczanski-Sobieski, NASA Langley Research Center (27, 12, p. 993) Article based on ICAS Paper 88-1.7.3

C90-166 Application of Global Sensitivity Equations in Multidisciplinary Aircraft Synthesis. P. Hajela and C. L. Bloebaum, University of Florida; and J. Sobieszczanski-Sobieski, NASA Langley Research Center (27, 12, p. 1002) Article

C90-167 Structural Efficiency Study of Graphite-Epoxy Aircraft Rib Structures. Gary D. Swanson and Zafer Gurdal, Virginia Polytechnic Institute and State University; and James H. Starnes Jr., NASA Langley Research Center (27, 12, p. 1011) Article

C90-170 Implementation of Generalized Optimality Criteria in a Multidisciplinary Environment. R. A. Canfield and V. B. Venkayya, Wright Research and Development Center, Wright-Patterson AFB (27, 12, p. 1037) Article

C90-173 Applications of Structural Optimization Software in the Design Process. Torsten Bräun and Ragnar Rosengren, Saab-Scania AB, Sweden (27, 12, p. 1057) Article

C90-176 Efficient Optimization for Aircraft Structures with a Large Number of Design Variables. Uwe L. Berkes, European Space Agency, France (27, 12, p. 1073) Article based on ICAS Paper 88-1.10.3

C90-178 Fitting Atmospheric Parameters Using Parabolic Blending. Salvatore Alfano and Akshai M. Gandhi, United States Air Force Academy (27, 12, p. 1087) Engineering Note